
IRVINE ET AL: AUTONOMOUS NETWORK 1

Autonomous Network
David Irvine∗, Fraser Hutchison†, Steve Mücklisch‡

MaidSafe.net, 72 Templehill, Troon, South Ayrshire, Scotland, UK. KA10 6BE.
∗david.irvine@maidsafe.net, †fraser.hutchison@maidsafe.net, ‡steve.muecklisch@maidsafe.net

First published September 2010.

Abstract—Autonomous networks are self-healing, self-
managing and most importantly independent of human
interference. Such networks will be able to be developed in
a way that avoids wasting effort on maintaining even simple
mechanisms such as storage, scalability and data retention.
Systems like these will quickly extend to providing a method
of highly scalable platforms that can accommodate real time
transactional logic. A working example of an autonomous
network is outlined in this paper.

Index Terms—security, freedom, privacy, authentication, en-
cryption, autonomous

CONTENTS

I Introduction 1
I-A Prerequisites 1
I-B General Conventions 2
I-C Specific Conventions 2

I-C1 Network Identities 2
I-C2 Storing and Deleting En-

crypted Data Chunks 2

II Overview 2

III Components 3
III-A Kademlia Component 3

III-A1 Knode 3
III-A2 Kademlia RPCs 3

III-B Overlay Component 3
III-B1 Node 3
III-B2 Node RPCs 3
III-B3 Roles 3

III-C Accounts 3
III-D Chunk Holders 3
III-E Chunk Info Holders 3

III-E1 Reference Lists 3
III-E2 Watch Lists 3
III-E3 Waiting Lists 5

III-F Account Holders 5

IV Main Processes 5
IV-A Joining the Network 5
IV-B Storing a Chunk 6
IV-C Retrieving a Chunk 7
IV-D Deleting a Chunk 7

V Maintaining Network Health 7
V-A Validity Checks by Chunk Info Holders 7
V-B Relocation Based on Rank 8
V-C Validity Checks by Chunk Holders . . . 8
V-D Geographic Relocation of Chunks . . . 8
V-E Caching of Chunks 8

VI Conclusions 8

References 8

Biographies 8
David Irvine . 8

I. INTRODUCTION

COMPUTING capability has dramatically increased in
recent years, particularly in terms of processing power

and available inter-connectivity of devices via the Internet.
This has allowed the creation of remarkable technology that
would have been considered “space age” or the works of a
science fiction writer until comparatively recently. Devices and
applications that allow world mapping, video conferencing
on the move, instant recording and sharing of nearly any
type of information from text to high definition video, the
ability to know where you are anywhere in the world and to
locate friends, information and tools to help calculate results
of questions is all without doubt amazing.

There is a huge downside though; and that is the ability
to store such data in secure, accessible and reliable locations
without the requirement for human organization. Today’s cloud
computing paradigm is an attempt to deliver such a system,
but does so in a manner that is more hype than fact. Actually,
today’s cloud computing is the antithesis of actual or true cloud
computing and is merely a marketing attempt to persuade us
that an autonomous network has been created.

This paper delivers a true platform for cloud computing,
that ensures human intervention is forbidden and in fact
circumvents any attempts to manipulate data or processes.

A. Prerequisites

Prior to reading this paper, it is highly advisable that the
reader fully understand Self Encrypting Data [1] and Peer to
Peer Public Key Infrastructure [2]. These papers detail some
components that will be used with the system presented in this
paper; in fact the Public Key Infrastructure (PKI) described in
Peer to Peer Public Key Infrastructure [2] is a fundamental
requirement of the autonomous network presented here.

IRVINE ET AL: AUTONOMOUS NETWORK 2

B. General Conventions

There is scope for confusion when using the term “key”, as
sometimes it refers to a cryptographic key, and at other times
it is in respect to the key of a DHT “key, value” pair. In order
to avoid confusion, cryptographic private and public keys will
be referred to as Kpriv and Kpub respectively, and DHT keys
simply as keys.

• Node ≡ a network resource which is a process, some-
times referred to as a vault in other papers. This is the
computer program that maintains the network and on its
own is not very special. It is in collaboration that this
Node becomes part of a very complex, sophisticated and
efficient network.

• H ≡ Hash function such as SHA, MD5, etc.
• PBKDF2[Passphrase][Salt][IterCount] ≡ Password-Based Key

Derivation Function or similar
• XXXpriv, XXXpub ≡ Private and public keys respectively

of cryptographic key pair named XXX
• AsymEnc[Kpub](Data) ≡ Asymmetrically encrypt Data

using Kpub

• AsymDec[Kpriv](Data) ≡ Asymmetrically decrypt Data
using Kpriv

• Sig[Kpriv](Data) ≡ Create asymmetric signature of Data
using Kpriv

• + ≡ Concatenation

C. Specific Conventions

1) Network Identities: In Peer to Peer Public Key Infra-
structure [2], the ability to create cryptographic key pairs
that are both secure and mathematically deduced is shown.
Several of these cryptographic key pairs with specific roles
are introduced here, as well as additional system-specific
components:

• DHT: This paper assumes the use of a key addressable
network, and in this case a Kademlia Distributed Hash
Table (DHT) is assumed. There is no requirement for
this to be restrictive in any way. The DHT can be
replaced with any key addressable network. It is also
assumed there is no issue with Network Address Trans-
lation (NAT) and all Nodes can freely communicate.
In this paper, it is assumed all cryptographic keys are
signed on the system and only the signatory identity
may amend or delete a value. There may be rules as
to which identity can store certain information in spe-
cific locations. Such an implementation can be found at
http://code.google.com/p/maidsafe-dht This implements a
Kademlia-based network and is described in MaidSafe
Distributed Hash Table [3]

• K ≡ The DHT replication factor.
• ANMAID ≡ The (ANonymous Maidsafe Anonym-

ous IDentification) packet is the root of a chain
that reaches as far as the PMID (below). This is a
pure packet, which means that the identity is created
as H(ANMAIDpub + Sig[ANMAIDpriv](ANMAIDpub)). This
identity is never stored on the network, thereby even
something encrypted with this public key is not on the
network at all. It is assumed that this identity is otherwise

maintained securely by a system such as that described
in maidsafe: A new network paradigm [4]

• MAID ≡ The (Maidsafe Anonymous
IDentification) packet has as its identity
H(MAIDpub + Sig[ANMAIDpriv](MAIDpub)). This packet is
stored on the network with its identity as the key (as
described in Peer to Peer Public Key Infrastructure [2]).
The MAID can be used by another Node or component
(even a person) to act on the network with the same
authority which the PMID has. This is an important
distinction from many other such systems. The ANMAID
is the revocation key for this identity.

• PMID ≡ The (Proxy Maidsafe IDentification) packet
has as its identity H(PMIDpub + Sig[MAIDpriv](PMIDpub)).
The PMIDpriv has to be stored on the machine that runs
the Node process. This is a potential security risk and
therefore the system requires that the PMID identity be
restricted in capability as far as possible. The MAID is
the revocation key for this identity.

2) Storing and Deleting Encrypted Data Chunks: The
process for storing chunks of data is described in more detail at
IV-B. However, the storing process essentially involves a group
of Nodes brokering a deal between the requesting Node (called
the client) and the responding Node (called the vault). The deal
is validated by means of a StoreContract which contains an
InnerContract which itself contains a SignedSize as detailed
below. Deleting a chunk also involves a SignedSize.

• SignedSize is a serialisable data object containing:
1) ChunkSize in bytes
2) Sig[PMIDpriv](ChunkSize)
3) PMID identity
4) PMIDpub

5) Sig[MAIDpriv](PMIDpub)

In the case of storing a chunk, the PMID is owned by
the client; for deleting a chunk, it is owned by a Chunk
Info Holder (covered below).

• InnerContract is serialisable data object containing:
1) ACK || NACK (agreement to deal)
2) SignedSize

• StoreContract is a serialisable data object containing:
1) InnerContract
2) Sig[PMIDpriv](InnerContract)
3) PMID identity
4) PMIDpub

5) Sig[MAIDpriv](PMIDpub)

In the case of storing or deleting a chunk, the PMID is
owned by the vault.

II. OVERVIEW

The answer to the current issues as described in ?? is
to redesign networks to require no central control and by
implication, no servers as we currently know them, whether
centralised or distributed. To achieve this there are several
important requirements:

1) Encryption of data units to a very high level. This is
described in Self Encrypting Data [1].

IRVINE ET AL: AUTONOMOUS NETWORK 3

2) A method of validation of Nodes as described in Peer
to Peer Public Key Infrastructure [2].

3) The ability to randomly select Nodes based on a math-
ematically distributed algorithm that can identify groups
of Nodes to act as independent certification for network
actions (and in some cases arbitration).

4) A method of distributed and verifiable measurement of
a Node’s capability.

5) A system of distribution of data to ensure geographic
protection of replicated information.1

One improvement, but not requirement, is the application
of a ranking system to allow a granular approach to Node
capability and therefore cost to the network.

The thinking involved in such a system is very similar to
the thought process behind Kademlia itself in many ways. It is
also apparently simple at first glance, but much more complex
when deriving the detail and particularly when considering
alterations to logic and the consequences of such.

III. COMPONENTS

A. Kademlia Component

1) Knode: Each Node on the network has an instance of a
Kademlia node (knode) running. Kademlia is mainly used as
the means of finding peers, not for actually storing/retrieving
data; this is left to another layer that acts as an overlay to the
DHT overlay network itself.

2) Kademlia RPCs: Please see Table I on page 4.

B. Overlay Component

1) Node: Nodes are run as a separate process and largely
manage themselves. At the moment, when the software is
installed and run, a daemon / service runs which starts an
"unowned" Node. This listens on the local network for owner
control RPCs.

2) Node RPCs: Please see Tables II - VII on pages 4 - 5
3) Roles: Nodes have three major concurrent roles in the

network: storing and maintaining encrypted data chunks, main-
taining various information about chunks, and maintaining
account information about other Nodes (see III-C below).
Nodes are referred to as Chunk Holders, Chunk Info Holders
or Account Holders respectively depending on which role we
wish to emphasize at the time. (Note however that any single
Node is likely to be all of these for multiple chunks and peers
simultaneously).

C. Accounts

In order to maintain fairness on the network, each Node
has an associated account, the name of which can be derived
from the Node’s PMID identity. The PMID identity should not
however be derivable from the account name.

This account details the amount of storage space the Node
offers to the network, the space the Node’s owner has used

1Here we assume replication as opposed to forward error correction. This
is a debate in computer science and may rage on for a while. In this paper
we assume a more binary approach to data safety, it is either secure or not
as opposed to possibly secure in the forward error correction model.

on the network, and the space the Node has actually given to
the network. The owner uses network space by storing files to
the network; the Node gives space by storing and maintaining
other users’ chunks.

Nodes can only store new data to the network if their
account will remain “in credit” (i.e. space offered > space
used) after the store operation. Users, regardless of account
status, will always be able to get data from then network.

A ranking mechanism which takes these figures (and many
other metrics) as inputs will eventually be implemented. Gen-
erally, rank will increase with the amount of space offered and
given.

D. Chunk Holders

For any chunk there should be at least two copies on the
network, ideally four or more, each stored on separate Nodes.
A Node which stores such a copy is referred to as a Chunk
Holder. It is in a Node’s interest to store chunks since its rank
metric is increased for doing so. Chunks can be moved from
one Node to another; as this happens the two corresponding
accounts are debited and credited. Frequently accessed chunks
can be cached on Nodes other than the official Chunk Holders,
to speed up retrieval along a lookup path.

E. Chunk Info Holders

1) Reference Lists: In order to be able to locate a given
chunk, a list of Chunk Holders’ identities (referred to as a
Reference List) is kept on the network. The Reference List is
held and maintained by the K Nodes whose IDs are closest
to the name of the chunk (see Figure 1). Each Node in this
group is referred to as a Chunk Info Holder.

A Reference List entry comprises the Chunk Holder’s Node
ID, and the time it was last contacted by the Chunk Info
Holder. This allows the Chunk Info Holder to return only
active Chunk Holders in response to a GetChunkReferences
request, yet keep details of stale Chunk Holders in case they
come back online.

2) Watch Lists: The same group also holds a list of peers
that are "watching" a chunk (referred to as a Watch List),
which means they stored the chunk at some point2 and are
now interested in retaining it on the network (see Figure 2).

Watch Lists are currently limited to 250 entries3; once filled,
new watchers are only registered by increasing a counter
and including their ID in a checksum. A chunk can only
be removed from the network once the corresponding Watch
List is empty, the counter is zero, and the checksum indicates
that all watchers have subsequently removed themselves (see
Figure 3). So even if the Watch List is empty and the counter
is zero, if something went wrong during the Chunk Info’s
lifetime (e.g. a Node which was never added to the Watch List
requested to be removed from it) the checksum helps detect

2If the chunk pre-existed on the network, they may not have actually
uploaded the chunk themselves.

3This figure is currently arbitrary and will be calculated based on several
network parameters as the logic improves.

IRVINE ET AL: AUTONOMOUS NETWORK 4

RPC
NAME

REQUEST FIELDS RESPONSE FIELDS PURPOSE

Ping Ping ACK || NACK Check peer is connected.
FindValue Key SignedValue (repeated) Get all values stored under Key.

FindNode Key
NodeContactDetails

(repeated) Find K closest Nodes to Key.

Store Key, SignedValue, TTL, RequestSignature ACK || NACK
Store SignedValue under Key for duration of TTL.

RequestSignature allows validation of ID of requester.

Delete Key, SignedValue, RequestSignature ACK || NACK
Delete SignedValue under Key. RequestSignature allows

validation of ID of requester.

Update Key, OriginalSignedValue, NewSignedValue,
TTL, RequestSignature

ACK || NACK
Update OriginalSignedValue under Key with

NewSignedValue for duration of TTL. RequestSignature
allows validation of ID of requester.

DownList NodeContactDetails ACK || NACK
Suggest removing Node from routing table. Confirm Node
is disconnected by sending Ping to Node before removal.

Table I
KADEMLIA RPCS

RPC
NAME

REQUEST FIELDS RESPONSE FIELDS PURPOSE

StorePrep ChunkName, SignedSize,
RequestSignature

StoreContract,
ResponseSignature

Make initial agreement between client and vault to store
data chunk.

StoreChunk
ChunkName, Data, PMID, PMIDpub,

Sig[MAIDpriv]
(PMIDpub),

RequestSignature
ACK || NACK Store data chunk. PMID belongs to client.

GetChunk ChunkName ACK || NACK, Data Get data chunk.
CheckChunk ChunkName ACK || NACK Check if the recipient has the chunk.

DeleteChunk ChunkName,SignedSize,
RequestSignature

ACK || NACK
Delete data chunk. RequestSignatureformed using

Chunk Info Holder’s PMID.

ValidityCheck ChunkName, RandomData
ACK || NACK,
HashContent

Ensure data chunk is uncorrupted.

CacheChunk
ChunkName, Data, PMID, PMIDpub,

Sig[MAIDpriv]
(PMIDpub),

RequestSignature
ACK || NACK Cache data chunk. PMID belongs to client.

Table II
NODE RPCS (CHUNK MANAGEMENT)

RPC
NAME

REQUEST FIELDS RESPONSE FIELDS PURPOSE

GetChunkReferences ChunkName
ACK || NACK,
Refs(repeated) Get Node IDs of holders of data chunk.

AddToWatchList ChunkName,SignedSize,
RequestSignature

ACK || NACK,
UploadCount,
TotalPayment

Request to be added to the list of watchers for data
chunk. RequestSignature formed using client’s PMID.

RemoveFromWatchList
ChunkName, PMID, PMIDpub,

Sig[MAIDpriv]
(PMIDpub),

RequestSignature
ACK || NACK

Request to be removed from the list of watchers for data
chunk. RequestSignature formed using client’s PMID.

AddToReferenceList ChunkName, StoreContract,
RequestSignature

ACK || NACK
Request to be added to the list of Chunk Holders for
data chunk. RequestSignature formed using vault’s

PMID.
Table III

NODE RPCS (CHUNK INFORMATION MANAGEMENT)

RPC
NAME

REQUEST FIELDS RESPONSE FIELDS PURPOSE

AmendAccount
AmendmentType,

AccountPMID,SignedSize,
ChunkName(optional)

ACK || NACK

If the AmendmentType is space offered, the request
comes from a client and doesn’t include a ChunkName.

Otherwise, the request comes from a Chunk Info
Holder and relates to storing or deleting a chunk.

ExpectAmendment

AmendmentType, ChunkName, PMID,
PMIDpub, Sig[MAIDpriv]

(PMIDpub),
RequestSignature, AmenderPMIDs

(repeated)

ACK || NACK
Allows Account Holders to anticipate a forthcoming
AmendAccount RPC from each of the K Chunk Info

Holders (indicated in AmenderPMIDs).

AccountStatus
AccountPMID, SpaceRequested,
PMIDpub, Sig[MAIDpriv]

(PMIDpub),
RequestSignature,

ACK || NACK,
SpaceOffered,
SpaceGiven,
SpaceTaken,

AmendmentResults
(optional, repeated)

Get the current status of a Node’s Account. If the
requester is the Account Owner, a list of all account
amendments since the last AccountStatus request was

made is returned also.

Table IV
NODE RPCS (ACCOUNT MANAGEMENT)

IRVINE ET AL: AUTONOMOUS NETWORK 5

RPC
NAME

REQUEST FIELDS RESPONSE FIELDS PURPOSE

GetSyncData
PMID, PMIDpub,

Sig[MAIDpriv]
(PMIDpub),

RequestSignature

ACK || NACK,
VaultAccountSet,
ChunkInfoMap,

VaultBufferPktMap

Used by a Node to retrieve serialised containers of data
from close peers which it should also be responsible for

holding.

GetAccount
AccountPMID, PMID, PMIDpub,

Sig[MAIDpriv]
(PMIDpub),

RequestSignature

ACK || NACK,
VaultAccount

Used by a Node to retrieve an individual account from
close peers which it should also be responsible for

holding.

GetChunkInfo
ChunkName, PMID, PMIDpub,

Sig[MAIDpriv]
(PMIDpub),

RequestSignature

ACK || NACK,
VaultChunkInfo

Used by a Node to retrieve info relating to an
individual chunk from close peers which it should also

be responsible for holding.

GetBufferPacket
BufferPacketName, PMID, PMIDpub,

Sig[MAIDpriv]
(PMIDpub),

RequestSignature

ACK || NACK,
VaultBufferPacket

Used by a Node to retrieve an individual buffer packet
from close peers which it should also be responsible for

holding.
Table V

NODE RPCS (SYNCHRONISATION OF MANAGEMENT DATA)

RPC
NAME

REQUEST FIELDS RESPONSE FIELDS PURPOSE

CreateBP
BufferPacketName, Data, PMID,
PMIDpub, Sig[MAIDpriv]

(PMIDpub),
RequestSignature

ACK || NACK Create a buffer packet.

ModifyBPInfo
BufferPacketName, Data, PMID,
PMIDpub, Sig[MAIDpriv]

(PMIDpub),
RequestSignature

ACK || NACK
Modify a buffer packet’s control information (e.g. set

permissions).

GetBPMessages
BufferPacketName, PMID, PMIDpub,

Sig[MAIDpriv]
(PMIDpub),

RequestSignature

ACK || NACK,
Messages (repeated) Retrieve a buffer packet’s messages.

AddBPMessage
BufferPacketName, Data, PMID,
PMIDpub, Sig[MAIDpriv]

(PMIDpub),
RequestSignature

ACK || NACK Add a message to a buffer packet.

Table VI
NODE RPCS (BUFFER PACKET MANAGEMENT)

RPC
NAME

REQUEST FIELDS RESPONSE FIELDS PURPOSE

SetLocalVaultOwned
PMIDpub, PMIDpriv,

Sig[MAIDpriv]
(PMIDpub), SpaceOffered ACK || NACK Take ownership of an unowned Node.

LocalVaultOwned Owned ACK || NACK Query a Node’s owned status.
VaultStatus StatusRequest StatusResponse Used to poll a vault for its current status.

Table VII
NODE RPCS (MISCELLANEOUS)

it, in which case the chunk would just be kept indefinitely or
at least for a very long time (several years).4

A Watch List entry comprises the watcher’s Node ID and
a flag to indicate if the entry can be deleted. The flag allows
retention of watchers who have requested their removal from
the Watch List, but who are still providing a “payment”
for the chunk. This permits these ex-watchers to be proper
recompensed eventually (once new watchers add themselves
to the Watch List).

Because of this wealth of information, Chunk Info Holders
are also responsible for monitoring the number of active Chunk
Holders on the network, and triggering chunk validity checks,
duplication, repair or removal as required. In future, Chunk
Info Holders may also collect various statistics, such as the
number of watchers over certain time periods and the amount
of requests for references to a chunk.

4This is a situation that will very likely be improved as further research
should yield a better algorithm for the removal of stale data. Any data that is
addressed by the hash of its content will only be deleted through a necessity
of reclaiming space.

3) Waiting Lists: Nodes requesting addition to a Watch List
are added to a Waiting List until payment for the chunk either
succeeds or fails, and if duplicate chunk copies are needed,
until the new Chunk Holders add themselves to the Reference
List.

F. Account Holders

The K Nodes whose IDs are closest to the name of a Node’s
account are called Account Holders. Full account information
can only be retrieved by the owner of the account, for privacy
reasons. Other Nodes are only allowed to confirm whether the
owner is authorised to perform a storage operation by checking
for enough available space.

IV. MAIN PROCESSES

A. Joining the Network

After successfully joining the network on the Kademlia
layer, an account needs to be created for the client’s Node
in order to specify how much space is to be offered to

IRVINE ET AL: AUTONOMOUS NETWORK 6

Figure 1. Add to Reference List

Request
validates?

Adding
succeeded?

YESYES

Send alert to
PMID's account holders

NONO

Respond NACK

Done

NONOYESYES

Respond ACK

AddToReferenceList

TryCommitToWatchList

Successful?

Done

Req. less
payments?

Replaced
anyone?

NO

Send "Amend Account
(Space Taken Dec)"

for client for surplus amount

Send "Amend Account
(Space Taken Dec)"

for replacee for 1x space

NO

YES

NO

YES

Done

(pending...)

YES

Send "Amend Account
(Space Given Inc)"

for chunk holder

Set
Storing
Done

Figure 2. Add to Watch List

Request
validates?

PrepareAddToWatchList

Preparation
succeeded?

YESYES

Send alert to
PMID's account holders

NONO

Respond NACK

Done

References
required?

YESYES

Respond ACK

NOYES

Respond ACK
and # of copies

NO

Send request to
verify storing permission

Payments
required?

Send "Amend Account
(Space Taken Inc)"

for client for req. amount

YESYESNONO

Payment Finalisation

Figure 3. Remove from Watch List

Request
validates?

Removal
succeeded?

YESYES

Send alert to
PMID's account holders

NONO

Respond NACK

Done

NONOYESYES

Respond ACK

RemoveFromWatchList

Creditors to
recompense?

Recompense creditors

Delete referenced chunks

NO

YES

Done

Amend chunk holders' acc.

References
removed?

NO

YES

the network. Only once enough of the K Account Holders
are aware of this account can further operations demanding
payments succeed. Fraudulent account creations are intended
to be detected by peer Nodes in future operations, e.g. when
storage operations could not be completed.

B. Storing a Chunk

To store a chunk, a client first has to ensure there is enough
space in its account (see III-C). It then looks up the K Chunk
Info Holders and requests to be added to the Watch List for
that chunk.

Once a Chunk Info Holder has received and validated an
AddToWatchList request, it adds the ID of the requesting peer
to the Waiting List. In response, the client gets informed how
many copies of the chunk need to be uploaded. This number
depends on how many copies of the chunk are already on the
network and is derived from the desired minimum amount of
copies (kMinChunkCopies5), usually lower to spare the client
from excessive uploading.

Each Chunk Info Holder then proceeds to look up the K
Account Holders of the client’s account, and sends each a
request to deduct the required payment (which equals the
storage space needed) from the client’s account. If the chunk
didn’t exist on the network, the client is asked for a payment
kMinChunkCopies times the size of the chunk, independent of
how many chunk copies were requested to be uploaded. If the
chunk did pre-exist, then no uploads are required and payment

5Currently a system wide constant

IRVINE ET AL: AUTONOMOUS NETWORK 7

Figure 4. Payment Finalisation

Allowed
to store?

SetPaymentsDone

YESYES NONO

ResetAddToWatchList

Watch list
empty?

Recompense creditors

Delete referenced chunks

NOYES

Done

TryCommitToWatchList

Successful?

Done

Req. less
payments?

Replaced
anyone?

NO

Send "Amend Account
(Space Taken Dec)"

for client for surplus amount

Send "Amend Account
(Space Taken Dec)"

for replacee for 1x space

NO

YES

NO

YES

Done

(pending...)

YES Amend chunk holders' acc.

depends on the state of the Watch List. If the Watch List is
not full, only a single payment is required, otherwise storing
is free. If this payment process triggered by the Chunk Info
Holders fails, for example because the client’s account isn’t
sufficiently funded, all previous operations are undone.

Once the payment process is complete, the corresponding
entry in the aforementioned Waiting List is flagged as having
been paid for. If the uploading of chunk copies was stipulated,
the entry remains in the Waiting List until the new Chunk
Holders have contacted the Chunk Info Holders. Otherwise
the entry is removed from the Waiting List.

If the client was told to upload chunk copies, it contacts
one Node per requested copy to negotiate a store contract. If
the peer Node is able to validate the request and can provide
enough physical storage space, the client can then proceed to
upload the data chunk. Upon successful receipt of the chunk,
the new Chunk Holder(s) look up and contact the Chunk
Info Holders, requesting inclusion in the Reference List. This
also causes the corresponding entry in the Waiting List to be
flagged as having completed the storage requirements. The
Chunk Info Holders then look up and request the amendment
of each of the new Chunk Holders’ accounts to reflect the
additional space used by the network.

Once an entry in a Waiting List indicates successful com-
pletion of payments (and storage if applicable), the corres-
ponding client can be committed to the Watch List as an
actual "watcher". At this point, any superfluous payments that
occurred from race conditions will be refunded. This concludes

the storing process and the chunk is at this point safely stored
on the network.

C. Retrieving a Chunk
To retrieve a chunk, the client has to look up and contact the

Chunk Info Holders to acquire the current list of active Chunk
Holders. This is done through a Kademlia FindValue, which
would return the ID of a peer that holds a cached copy of the
chunk, or an empty value requiring the Client to ask for the
Chunk Holders directly. The first Chunk Holder to confirm
that it has the required chunk is used to retrieve the chunk
from.

D. Deleting a Chunk
If clients decide they don’t want to keep a file any more, they

remove themselves from the Watch Lists of the corresponding
chunks. Once a Watch List becomes empty, i.e. no one is
watching that particular chunk any more, it can be deleted from
the network. This means traversing the current Reference List
and calling a remote delete operation on the Chunk Holders,
recompensing all the peers that made a payment to keep
the minimum number of chunks on the network, as well as
decrease the space given value in the (former) Chunk Holders’
accounts.

V. MAINTAINING NETWORK HEALTH

A. Validity Checks by Chunk Info Holders
The Chunk Info Holders will be responsible for triggering

validity checks on a chunk. When a check is due, a Chunk
Holder will be chosen at random and told to initiate a validity
check. This is a relatively simple process; for example, given a
chunk named as ABC whose content is ContentABC, a Chunk
Holder will do the following:

1) Get the contact details of the other Chunk Holders for
ABC

2) For each Chunk Holder, send a ValidityCheck request
(see Table II on page 4) with a piece of random data
(different data for each Node) in the RandomData field

3) Calculate H(ContentABC + RandomData) and retain
this as Result

4) Each Chunk Holder’s reply should contain
H(ContentABC + RandomData) in the HashContent
field

5) Confirm each Chunk Holders’ HashContent field
matches the corresponding Result.

Any discrepancies are reported to the Chunk Info Holders and
the Node at fault is informed. If this Node is unable to rectify
the fault (e.g. by requesting a fresh copy from a good Chunk
Holder and successfully passing a subsequent validity check)
it is removed from the Reference List for the chunk and its
account is amended to reflect less space given. This is a part
of the system where rank will be adversely affected when it is
put in place. Bad Chunk Holders will lose rank very quickly.

The triggers from the Chunk Info Holder to the Chunk
Holder are time-based and will initially start at 2 minutes
doubling every time to 20 hours. Any failure will reset the
schedule.

IRVINE ET AL: AUTONOMOUS NETWORK 8

B. Relocation Based on Rank

Chunks will be relocated when the Chunk Info Holder notes
that any Chunk Holder has lost or gained rank in the system.

C. Validity Checks by Chunk Holders

On request for a chunk to be delivered to another Node, a
Chunk Info Holder will trigger an internal validity check.

D. Geographic Relocation of Chunks

A Chunk Info Holder that triggers a validity check will
query their own routing table for Chunk Holders of the same
status as the current Chunk Holders, but with a longer Round
Trip Time (RTT). On finding a Node that is further away the
data will be moved, preferably with a chunk swap. This swap
will be negotiated via the Chunk Info Holder for the remote
Node in question.

E. Caching of Chunks

When loading a data chunk from the network, if the
Kademlia lookup phase took more than one iteration, a copy
of the chunk will be cached upon successful completion of
the chunk’s retrieval. The CacheChunk RPC will be sent to
the last Node contacted during the Kademlia lookup that did
not have the chunk. Cached chunks should be located in a
cache directory on the Node and be part of a First In First
Out (FIFO) queue. This queue should only require a chunk
removal when the Node requires the space.

This simple mechanism ensures data integrity is
strengthened, but more importantly shares the load of
any Node that hosts interesting or popular chunks. There
are many other advantages, such as resistance to denial of
service attacks or distributed denial of service attacks, or
if web based data is stored (such as a web site) then the
more popular it is the more responsive the network will be
when data is requested from this web site. This is almost
the opposite of the case in today’s World Wide Web, but is,
again, more logical.

VI. CONCLUSIONS

There are several dramatic improvements over contem-
porary paradigms described in this single paper. The ideas
presented here allow the creation of a serverless network which
gives users a chance for the first time ever to retain complete
control of their own security and personal information.

They also yield massive potential gains in terms of space
(via data deduplication), data integrity (via validity checks
and autonomous data repair), resilience to churn and attacks
(via validity checks, ranking, geographic relocation of chunk
copies), and scalability and transfer rates (via chunk caching).

It is no overstatement to say that the autonomous network
described in this paper represents a highly significant step
forward for the world of computing.

REFERENCES

[1] David Irvine, Self Encrypting Data, david.irvine@maidsafe.net
[2] David Irvine, "Peer to Peer" Public Key Infrastructure,

david.irvine@maidsafe.net
[3] David Irvine, MaidSafe Distributed Hash Table,

david.irvine@maidsafe.net
[4] David Irvine, maidsafe: A new networking paradigm,

david.irvine@maidsafe.net

David Irvine is a Scottish Engineer and innovator who has spent the last
12 years researching ways to make computers function in a more efficient
manner.

He is an Inventor listed on more than 20 patent submissions and was
Designer of one of the World’s largest private networks (Saudi Aramco, over
$300M). He is an experienced Project Manager and has been involved in start
up businesses since 1995 and has provided business consultancy to corporates
and SMEs in many sectors.

He has presented technology at Google (Seattle), British Computer Society
(Christmas Lecture) and many others.

He has spent many years as a lifeboat Helmsman and is a keen sailor when
time permits.

	Introduction
	Prerequisites
	General Conventions
	Specific Conventions
	Network Identities
	Storing and Deleting Encrypted Data Chunks

	Overview
	Components
	Kademlia Component
	Knode
	Kademlia RPCs

	Overlay Component
	Node
	Node RPCs
	Roles

	Accounts
	Chunk Holders
	Chunk Info Holders
	Reference Lists
	Watch Lists
	Waiting Lists

	Account Holders

	Main Processes
	Joining the Network
	Storing a Chunk
	Retrieving a Chunk
	Deleting a Chunk

	Maintaining Network Health
	Validity Checks by Chunk Info Holders
	Relocation Based on Rank
	Validity Checks by Chunk Holders
	Geographic Relocation of Chunks
	Caching of Chunks

	Conclusions
	References
	Biographies
	David Irvine

