
IRVINE: MAIDSAFE DISTRIBUTED FILE SYSTEM 1

MaidSafe Distributed File System
David Irvine∗

MaidSafe.net, 72 Templehill, Troon, South Ayrshire, Scotland, UK. KA10 6BE.
∗david.irvine@maidsafe.net

First published September 2010.

Abstract—Distributed file systems require servers or control
nodes. Access to a file system is a security issue that can
apparently only be controlled by some kind of authority, and
this is always a potential point of failure. These file systems also
require an indexing mechanism. This paper presents a distributed
file system without centralised control or indexing. This file
system also utilises a distributed locking mechanism to ensure
data integrity in the case of multi-user access to any file.

Index Terms—security, freedom, privacy, file systems

CONTENTS

I Introduction 1
I-A Conventions Used 1
I-B Security of Data 1

II Overview 2

III Distributed Directories 2
III-A General 2
III-B Creation Process 2
III-C Encryption of Directory Entries 2
III-D Advantages of Distributed Directories . 2
III-E Data Locks 2
III-F Private Shared Directory Structures . . . 2

III-F1 Creating a Shared Root Dir-
ectory 2

III-F2 Getting Access to a Private
Shared Directory 3

III-F3 Revoking Access to a Private
Shared Directory 3

III-G Public Shared Directory Structures . . . 3
III-H Anonymous Shared Directory Structures 3

IV Conclusions 3

References 3

Biographies 3
David Irvine . 3

I. INTRODUCTION

F ILESYSTEMS are a relatively new and slow-changing
part of computing. There are differences between oper-

ating systems (and even versions of operating systems) in
their ability to handle access to data via a file system. This
has proved to be problematic over the years and has led
to many short-term fixes. Systems such as CIFS, Andrews,

SMB and many others appear to be an answer, but for many
reasons (occasionally political) they lose ground again. It is
the intention of this paper to present a universal file system
that implements a minimum set of features that will operate
cross platform.

This system will represent itself to a user as a native file
system on any platform, and as such requires low level drivers
and code to be installed alongside any application using it.

A significant advance in distributed locking is also em-
ployed, which allows shared directories to be easily set up
and maintained.

In addition, there is a solution to the problem of location of
data, or path sizes, which is currently limited on every operat-
ing system. This paper presents a mechanism to overcome this
and enable an almost infinite number of levels of directories
to be implemented.

A. Conventions Used
There is scope for confusion when using the term “key”, as

sometimes it refers to a cryptographic key, and at other times
it is in respect to the key of a DHT “key, value” pair. In order
to avoid confusion, cryptographic private and public keys will
be referred to as Kpriv and Kpub respectively, and DHT keys
simply as keys.

• Node ≡ a network resource which is a process, some-
times referred to as a vault in other papers. This is the
computer program that maintains the network and on its
own is not very special. It is in collaboration that this
Node becomes part of a very complex, sophisticated and
efficient network.

• H ≡ Hash function such as SHA, MD5, etc.
• XXXpriv, XXXpub ≡ Private and public keys respectively

of cryptographic key pair named XXX
• SymEnc[PASS](Data) ≡ Symmetrically encrypt Data us-

ing PASS
• Sig[Kpriv](Data) ≡ Create asymmetric signature of Data

using Kpriv

• + ≡ Concatenation
•

⊕
≡ Bitwise Exclusive Or (XOR)

• STORE ≡ Network or other key addressable storage
system

• PutV[Key](Value) ≡ Store Value under Key on STORE.
This value is signed.

B. Security of Data
In order to achieve data security, nodes requesting a

PutV[Key](Value) must sign both Value and the request itself.
STORE must only allow subsequent changes to Value if the
request and replacement Value are similarly signed.

IRVINE: MAIDSAFE DISTRIBUTED FILE SYSTEM 2

II. OVERVIEW

To enable a huge amount of data to be organised into a
directory structure (as we are used to) then a new method of
data management is needed. In this case, we have created a
system of divorcing the structure of any data from a tree in
one direction.

In this paper, we present a system where a directory
structure may be traversed forward from any point and with
efficient implementation back to that point, but no further back
unless new knowledge of the structure is gained. This has the
effect of allowing directory trees to be free forming rather than
tied to any root or base level.

III. DISTRIBUTED DIRECTORIES

A. General
Every directory has a unique identifier associated with it.

Part of this identifier is used as a key under which its encrypted
contents1 are held on STORE. The contents are encrypted
(and hence can only be decrypted) by using the identifiers of
the directory and the directory’s parent. In this way, a given
directory’s contents (and hence files and subdirectories) can be
recursively decrypted to yield all the levels of subdirectories
it may contain. However, without knowledge of the identifier
of the directory’s parent, the parent cannot be decrypted.

B. Creation Process
The process to create a subdirectory (Child) of a directory

(Parent which has identifier ParentID) is as follows:
1) Find a random key (ChildKey) which is unused on

STORE
2) Derive the Child’s identifier (ChildID) from ChildKey

(e.g. by appending random data)
3) Add a new entry2 which includes ChildID in Parent to

represent Child
4) Encrypt Parent and Child (yielding ParentEnc and

ChildEnc respectively) as described below
5) PutV[ParentKey](ParentEnc)
6) PutV[ChildKey](ChildEnc)

C. Encryption of Directory Entries
This uses a process very similar to that described in Self

Encrypting Data [1]. The process is as follows:
1) Self-encrypt the Child directory as any other file in [1].

This yields a datamap (ChildDM)
2) Where H(ChildID+ ParentID) is named Obf, create

a data chunk (ObfChunk) which is the same size as
ChildDM by repeatedly rehashing Obf and appending
the result, i.e. Obf + H(Obf) + H(H(Obf)) + ...

3) Create an obfuscated datamap, ObfDM =
ChildDM

⊕
ObfChunk

4) Create a symmetric encryption passphrase, Pass =
H(ParentID+ ChildID)

5) Finally, create the encrypted datamap, EncDM =
SymEnc[Pass](ObfDM)

1“contents” here does not mean the files listed in the directory, but rather
the structure used to represent the list (e.g. a database)

2The entry may also contain all required metadata of Child.

D. Advantages of Distributed Directories

• We can have an almost infinite traversal of directories
with no limit on depth

• To share data, all that is required is access to a decrypted
directory3 and then all the directories below will be
automatically shared

• Directories following a distributed paradigm are more
suited for mass distribution

• Avoidance of network bottlenecks

E. Data Locks

If the STORE is a file system or database, then data locks
are a standard feature. Here we discuss locking in a Distributed
Hash Table (DHT) which is historically problematic. This
section assumes a DHT of similar capability to MaidSafe’s
Distributed Hash Table [2].

To ensure writes to data are atomic, we require a locking
mechanism that is solid and allows the network to recover
from stale locks. In a MaidSafe DHT this can be achieved
quite simply and is efficient due to the speed of the network,
via managed connections.

To write data, a node requires to request a lock from
the κ closest nodes to the data (this requires that no dead
nodes exist in the DHT). On receiving a lock, each node
will confer with the other nodes; if all accept the lock, then
it will be implemented. If there are any collisions of two
separate requests for a lock, both are rejected. In this case,
the requesting nodes will back-off for a random time and try
again.

On receiving a lock, a node will read the data again to
confirm it is the same version that has been updated and will
then update the value.

There should be a system wide lock duration constant in
place that will remove any locks that have gone stale (as they
will).

Lock requests will be signed by the sender to allow the κ
recipients to confirm the permissions of the requester. If the
signature validation fails, the requests are silently dropped.

F. Private Shared Directory Structures

To enable private shared directory structures, two issues
need to be addressed; what to use in place of ParentID for
the shared root directory, and how to allow permitted peers
access to the decrypted shared root directory.

1) Creating a Shared Root Directory: Creating a shared
root directory is as per III-B above with the exception of
the encryption element. The node creating the shared root
directory cannot allow peers to know the ParentID for the
directory (for security reasons). A replacement is derived, and
the encryption phase is carried out as per III-C. Creating and
storing the replacement for ParentID is completed as follows4:

1) Create a key pair ShareOwnpriv and ShareOwnpub

3or an encrypted directory along with the keys required for decryption
4Steps 1 to 6 describe creating a self-signed identity packet as detailed in

"Peer to Peer" Public Key Infrastructure[3]

IRVINE: MAIDSAFE DISTRIBUTED FILE SYSTEM 3

2) Create an ID for the share owner, ShareOwnID =
H(ShareOwnpub + Sig[ShareOwnpriv](ShareOwnpub))

3) PutV[ShareOwnID](ShareOwnpub+
Sig[ShareOwnpriv](ShareOwnpub))

4) Create a key pair Sharepriv and Sharepub
5) Create an ID for the share, ShareID =

H(Sharepub + Sig[ShareOwnpriv](Sharepub))
6) PutV[ShareID](Sharepub + Sig[ShareOwnpriv](Sharepub))
7) H(Sharepub) is now used as the replacement for

ParentID

Normally, a node storing an encrypted datamap EncDM
of a private non-shared directory would sign the
PutV[DirectoryKey](EncDM) request and data with a
cryptographic private key (Kpriv) known only to itself.
A single Kpriv could be used for all directories, regardless of
whether they are in the same tree or not.

However, in the case of a shared directory, peers must be
able to modify it, i.e. they must be able to sign modified
datamaps and requests with the original private key. For
this reason, the Sharepriv is used when storing an encrypted
datamap of a shared directory. The same Sharepriv is used for
all subdirectories of the shared root. However, each new shared
root directory must have a unique Sharepriv to enable peer
permissions to be assigned on a ’per-shared-directory’ basis.

2) Getting Access to a Private Shared Directory: The cre-
ator of a private shared root directory allocates permissions to
selected peers and sends each a signed and encrypted message
on successful creation of the directory. All peers receive
the share name (human-readable as assigned by the creator),
ShareID, Sharepub, and ChildKey. This enables retrieval and
decryption of the encrypted datamap (from STORE held under
ChildKey) (using H(Sharepub) and ChildKey), i.e. read access
to the directory and its subdirectories.

For peers with write access, the message also contains
Sharepriv to enable them to modify the encrypted datamap held
on STORE.

For peers given administrator access, the message also con-
tains ShareOwnpriv to enable them to alter ShareIDs, remove
users and delete the share completely from the STORE.

3) Revoking Access to a Private Shared Directory: To
revoke a peer’s access to a shared directory, an administrator
creates a new ShareID and keypair. Then the administrator
locks the root of the share, copies the content to the new
root and creates a new ChildKey. A message is sent to all
authorised peers (minus the peer having its access revoked) as
in the previous section. When a peer receives such a message,
it must start re-reading the share from the new root.

The administrator then copies all the existing directory
structures (locking each in turn) to the new structure, starting
at the new root and deleting the old directories recursively.

A user’s system will note this action and if a file is opened,
it will wait for the new directory (and datamap) to become
available if the current directory is locked. Otherwise it is safe
to store the file as the recursive ’move’ will not have reached
that point.

G. Public Shared Directory Structures

Each user may also create public shared directory structures;
i.e. ones which can be accessed (read-only) by any peer. The
process is simpler than the one for private shared directories
as the datamaps need not be encrypted, and there is no need
to send a message to a group of peers.

The creator of a public shared directory uses a differ-
ent cryptographic private key (named MPIDpriv) to sign the
datamap and requests. MPIDpriv is not revealed to any peer
and can be used for all public shared directories, regardless
of whether they are in the same tree or not. This way anyone
can see the data but only the creator can edit it, without the
need for locks.

In order to allow peers to find public shared directories,
users should have a publicly-known ID (similar to the concept
of an email address). For a node whose public ID is PublicID,
the datamap of its root public shared directory should be stored
under H(PublicID).

Using this directory structure, any user can publish inform-
ation and it can be read by any peer who merely knows the
user’s public ID. Subsequently, data will be passed around and
browser addons can be created to facilitate widespread access
to data on public shared directories.

H. Anonymous Shared Directory Structures

In future, users will also be able to create anonymous shared
directory structures. These will be similar to public shared
ones, but the keys under which datamaps are stored and any
signing keys will not be traceable back to the user concerned.

IV. CONCLUSIONS

This paper has introduced a method of storing data in a
distributed network in a manner that is addressable, searchable
and very scalable. It is apparent that such systems could in fact
supplement or replace paradigms used by the existing world
wide web for data sharing. It is evident that applications that
make use of massively shared data and data presented on a
native format to users is an exciting proposition.

ACKNOWLEDGMENT

Thanks to Yanick Vézina who provided great assistance in
proof reading this paper.

REFERENCES

[1] David Irvine, Self Encrypting Data, david.irvine@maidsafe.net
[2] David Irvine, MaidSafe Distributed Hash Table,

david.irvine@maidsafe.net
[3] David Irvine, "Peer to Peer" Public Key Infrastructure,

david.irvine@maidsafe.net

David Irvine is a Scottish Engineer and innovator who has spent the last
12 years researching ways to make computers function in a more efficient
manner.

IRVINE: MAIDSAFE DISTRIBUTED FILE SYSTEM 4

He is an Inventor listed on more than 20 patent submissions and was
Designer of one of the World’s largest private networks (Saudi Aramco, over
$300M). He is an experienced Project Manager and has been involved in start
up businesses since 1995 and has provided business consultancy to corporates
and SMEs in many sectors.

He has presented technology at Google (Seattle), British Computer Society
(Christmas Lecture) and many others.

He has spent many years as a lifeboat Helmsman and is a keen sailor when
time permits.

	Introduction
	Conventions Used
	Security of Data

	Overview
	Distributed Directories
	General
	Creation Process
	Encryption of Directory Entries
	Advantages of Distributed Directories
	Data Locks
	Private Shared Directory Structures
	Creating a Shared Root Directory
	Getting Access to a Private Shared Directory
	Revoking Access to a Private Shared Directory

	Public Shared Directory Structures
	Anonymous Shared Directory Structures

	Conclusions
	References
	Biographies
	David Irvine

