
IRVINE: SELF-AUTHENTICATION 1

Self-Authentication
David Irvine∗

MaidSafe.net, 72 Templehill, Troon, South Ayrshire, Scotland, UK. KA10 6BE.
∗david.irvine@maidsafe.net

First published September 2010.

Abstract—Today all known mechanisms that grant access to
distributed or shared services and resources require central
authoritative control in some form, raising issues in regard
to security, trust and privacy. This paper presents a system
of authentication that not only abolishes the requirements for
any centrally stored user credential records, it also negates the
necessity for any server based systems as a login entity for users
to connect with prior to gaining access to a system.

Index Terms—security, freedom, privacy, authentication

CONTENTS

I Introduction 1

II Implementation 1
II-A Issues to be Solved 1
II-B Conventions 2
II-C Overview of Self-Authentication 2

II-C1 Requirements 2
II-C2 Methodology 2

III Detailed Implementation 2
III-A Creation of an Account 2
III-B Login / Load Session Process 2
III-C Logout / Save Session Process 2
III-D Fallback Account Packets 2

III-D1 Updated Account Creation
Process 2

III-D2 Updated Login Process . . . 3
III-D3 Updated Logout / Save Ses-

sion Process 3
III-E Further Enhancements 3

III-E1 Time Based Obfuscation . . 3
III-E2 Distributed Storage System . 3

IV Conclusions 3

References 3

Biographies 3
David Irvine . 3

I. INTRODUCTION

AUTHENTICATIONallows access to a system at a certain
level or privilege. This is generally accepted as the

privilege as granted by an authoritative third party who owns
or manages the particular service or resource being accessed.
In cloud-computing or personal computing this is a limiting

factor and a significant security risk. Trust in third parties
with personal or confidential data is something that is arguably
impossible without any radical change in the very structure and
fabric of modern society. This paper presents a system where
there is no requirement for such a third-party involvement.

A significant shift in thinking nowadays is to spread data
across multiple locations for security and ease of access. This
has surfaced privacy concerns, and increased awareness of
ownership of data, something that is often disregarded very
easily. But rarely all personal data is surrendered in this way;
many systems offer some level of encryption to ensure privacy
of data, but none offer any system of personal access to
personal data, privately. In almost every case there is some
form of contract, whether implied or actual between the third-
party service provider and the client. Furthermore the supplier
may independently decide or be forced to act on the data,
whether deleting encrypted data, going out of business or
becoming a victim of damage or theft.

This situation is a crucial impediment to personal freedom,
and without a change in technical capabilities that allow the
mindset change that appears more prevalent as time goes by,
there will be a significant gulf between people’s individual
desires and technology’s ability to deliver. This in itself may
impede progress and innovation, which would be an enormous
failure of Science and Engineering to take responsibility for.

This paper will outline and detail a significant mind-shift
in access controls that not only answer these issues, but take
the current situation and dramatically alter our relationship
with technology, particularly in regard to storing, sharing and
developing our most personal thoughts, aspirations and desires.

II. IMPLEMENTATION

A. Issues to be Solved
Given a traditional resource exchange, the bargain between

involved parties tends to be direct and physically local. How-
ever, the de facto replacement of barter by monetary systems
in modern societies introduced the requirement of trust in third
parties providing and controlling the necessary infrastructure,
such as banks and financial authorities.

It is an illogical consideration to have created a technology
based solution which requires this demand of trust, and to do
so in a manner that is almost uncontrolled. Technology tends to
be based on logic, thus it would appear obvious that creating,
sharing and retrieving information fed into a computing device
by a person should not require that computer to connect to a
network of computers with a controller or guardian that is not
a system of pure logic.

A significant reason for the current situation is the inability
for identities to be created, managed and personally controlled.

IRVINE: SELF-AUTHENTICATION 2

This is a reasonable request from people to make from
their technology, but so far has been regarded as impossible
by technology professionals. A system of personal identity
management is fundamental for the removal of the illogical
situation of today.

B. Conventions

There is scope for confusion when using the term “key”, as
sometimes it refers to a cryptographic key, and at other times
it is in respect to the key of a DHT “key, value” pair. In order
to avoid confusion, cryptographic keys will be referred to as
K, and DHT keys simply as keys.

• H ≡ Hash function such as SHA, MD5, etc.
• PBKDF2[Passphrase][Salt] ≡ Password-Based Key Deriva-

tion Function or similar.
• SymEnc[K](Data) ≡ Symmetrically encrypt Data using

K.
• SymDec[K](Data) ≡ Symmetrically decrypt Data using

K.
• + ≡ Concatenation.
• PutV[Key](Value) ≡ Store a Value under the given Key.
• GetV[Key] ≡ Retrieve the Value identified by Key.
• DelV[Key](Value) ≡ Delete Value identified by Key. Value

must be provided as multiple values can be stored under
a single key.

C. Overview of Self-Authentication

1) Requirements: Self-authentication requires a storage
mechanism accessible by the users of the system. This may
be public (such as a peer-to-peer network) or private (such a
a storage area network); this paper assumes that it should also
be a key addressable storage system.

2) Methodology: Self-authentication relies on a system
where an entity can create a unique key to store a value
in the storage system. The value stored with this key should
contain an encrypted passport to data. This passport may be
cryptographically secure keys and or a list of other keys to
make use of the information to be stored and or shared as
well as any additional components required.

The location of this initial key should be masked or at least
not obvious in the storage mechanism. Further masking should
be considered. This simplified approach is the basis for self
authentication and is extended into a system that is capable
of security in a manner that allows access data to be stored
publically and with no additional requirement such as firewalls
or access controls.

III. DETAILED IMPLEMENTATION

A. Creation of an Account

Here we will assume there are two inputs from the user of
the system: user-name U, and password W. A salt S is also
derived (in a repeatable way) from U and W.

To generate a unique identifier, we hash the concatenation
of the user-name and the salt, H(U+ S).

PBKDF2 is used here to strengthen any password keys used.
This is required as user selected passwords are inevitably weak

and the user may not know the user-name is also used as a
password in the system. Account specifies session data, like
user details or an index of references to further data. This
packet is located through an Access Packet holding a random
string RndStr.

1) GetV[H(U+S)] ≡ False (Ensure uniqueness)
2) Generate random string RndStr

3) PutV[H(U+S)]

(
SymEnc[PBKDF2[U][S]](RndStr)

)
(Store

Access Packet)
4) PutV[H(U+S+RndStr)]

(
SymEnc[PBKDF2[W][S]](Account)

)
(Store Account Packet)

B. Login / Load Session Process

1) SymDec[PBKDF2[U][S]]

(
GetV[H(U+S)]

)
≡ RndStr

2) SymDec[PBKDF2[W][S]](GetV[H(U+S+RndStr)]) ≡ Account

For the following operation, RndStr should be kept locally for
the duration of the session.

C. Logout / Save Session Process

1) Generate new random string RndStrnew
2) PutV[H(U+S+RndStrnew)]

(
SymEnc[PBKDF2[W][S]](Account)

)
(Store new Account Packet)

3) PutV[H(U+S)]

(
SymEnc[PBKDF2[U][S]](RndStrnew)

)
(Up-

date Access Packet)
4) DelV[H(U+S+RndStr)](OldAccount) (Delete old Account

Packet)

D. Fallback Account Packets

The previous sections outlined the basic system of authen-
tication. However, this can be extended for safety reasons. As
with any system, the serialisation and store operation of the
account data can fail for any reason, resulting in unreadable
data upon retrieval. This would be catastrophic as access to
the user’s data on the system may be rendered impossible. To
reduce any such risk, a fallback copy of an Account Packet
(and its Access Packet) is kept, to allow reverting to the
previous version in case the current version can’t be restored
or turns out to have been generated erroneously. Like the
main Access Packet, the fallback Access Packet contains an
(encrypted) random string, designated RndStrfallback.

1) Updated Account Creation Process:
1) GetV[H(U+S)] ≡ False (Ensure uniqueness of Access

Packet)
2) GetV[H(U+(S−1))] ≡ False (Ensure uniqueness of fall-

back Access Packet)
3) Generate random string RndStr and copy

RndStr→ RndStrfallback
4) PutV[H(U+S)]

(
SymEnc[PBKDF2[U][S]](RndStr)

)
5) PutV[H(U+(S−1))]

(
SymEnc[PBKDF2[U][S−1]](RndStr)

)
6) PutV[H(U+S+RndStr)]

(
SymEnc[PBKDF2[W][S]](Account)

)
In this case, the random strings in the Access Packets are
the same, thus point to the same (unique) Account Packet.
Fallback packets are only kept once the Account Packet is
updated.

IRVINE: SELF-AUTHENTICATION 3

2) Updated Login Process:
1) if (GetV[H(U+S)] ≡ EncRndStr)

a) SymDec[PBKDF2[U][S]](EncRndStr) ≡ RndStr

b) SymDec[PBKDF2[W][S]]

(
GetV[H(U+S+RndStr)]

)
≡

Account

2) else (or if previous attempt failed)
a) GetV[H(U+(S−1))] ≡ EncRndStrfallback
b) SymDec[PBKDF2[U][S−1]](EncRndStrfallback) ≡

RndStrfallback
c) SymDec[PBKDF2[W][S−1]]

(
GetV[H(U+S+RndStrfallback)]

)
≡ Accountfallback

3) Updated Logout / Save Session Process: Desig-
nate existing RndStr as RndStrold and RndStrfallback as
RndStrfallback old

1) Generate new random string RndStrnew
2) PutV[H(U+S)]

(
SymEnc[PBKDF2[U][S]](RndStrnew)

)
(Up-

date Access Packet with new random string)
3) PutV[H(U+(S−1))]

(
SymEnc[PBKDF2[U][S−1]](RndStrold)

)
(Update fallback Access Packet with old random string)

4) PutV[H(U+S+RndStrnew)]

(
SymEnc[PBKDF2[W][S]](Account)

)
(Update Account Packet using new random string)

5) DelV[H(U+S+RndStrfallback old)](Accountfallback old) (Delete
old Account Packet)

The previous Account Packet remains untouched, instead the
fallback Access Packet is redirected to it and the normal
Access Packet points to the new Account Packet. The previous
fallback Account Packet is deleted. This is a security measure
to hinder slow brute-force attacks on decrypting the Access
Packet, which by the time the cleartext random string is
obtained would make it obsolete.

E. Further Enhancements

1) Time Based Obfuscation: In the previous sections a
system of self authentication was detailed which is very
effective. A potential failure point, however, may be the Access
Packets, as those are never altering their location (key) and can
pose a target for any attacker who is monitoring data traffic
between the user and the system.

To remove this weakness, a predictably altering piece of
data can be introduced, such as time (e.g. week number, day
of year or similar). In this case in III-B the GetV call would
be iterative, starting at the current time slot and decrementing
until it returns with a value. Access Packets at “outdated”
locations would be deleted on detection, and updates always
stored in the current location, resulting in regularly “moving”
packets.

2) Distributed Storage System: This system can be en-
hanced with the introduction of a distributed storage network
as described in [4]. This has many advantages including the
ability to mask any account data in a large address space
and protect with cryptographically secure privileges that can
prevent unauthorised deletion or any loss of data packets.

IV. CONCLUSIONS

The system presented is one version of a server-less au-
thentication system. There is a strong case for this to enable

true cloud based services with users being in control of their
own data and access privileges. Such a system can be applied
in a multitude of situations and may be particularly useful
with paid services, which would not require the customer
to divulge any personal information or create yet another
identity specifically for a single service, providing a shared
infrastructure exists.

We demonstrated a working version of such a system for
the first time in April 2008 in our offices in Troon, Scotland,
and as far as we are aware this was the first time in history
a person created their own identity, stored it and managed all
their actions without any server requirement and without any
third party control.

ACKNOWLEDGMENT

Thanks to Yanick Vézina who provided great assistance in
proof reading this paper.

REFERENCES

[1] as described by Van Jacobson in this link below, August 30, 2006
http://video.Google.com/videoplay?docid=-6972678839686672840

[2] David Irvine, Self Encrypting Data, david.irvine@maidsafe.net
[3] David Irvine, "Peer to Peer" Public Key Infrastructure,

david.irvine@maidsafe.net
[4] David Irvine, maidsafe: A new networking paradigm,

david.irvine@maidsafe.net

David Irvine is a Scottish Engineer and innovator who has spent the last
12 years researching ways to make computers function in a more efficient
manner.

He is an Inventor listed on more than 20 patent submissions and was
Designer of one of the World’s largest private networks (Saudi Aramco, over
$300M). He is an experienced Project Manager and has been involved in start
up businesses since 1995 and has provided business consultancy to corporates
and SMEs in many sectors.

He has presented technology at Google (Seattle), British Computer Society
(Christmas Lecture) and many others.

He has spent many years as a lifeboat Helmsman and is a keen sailor when
time permits.

	Introduction
	Implementation
	Issues to be Solved
	Conventions
	Overview of Self-Authentication
	Requirements
	Methodology

	Detailed Implementation
	Creation of an Account
	Login / Load Session Process
	Logout / Save Session Process
	Fallback Account Packets
	Updated Account Creation Process
	Updated Login Process
	Updated Logout / Save Session Process

	Further Enhancements
	Time Based Obfuscation
	Distributed Storage System

	Conclusions
	References
	Biographies
	David Irvine

