
IRVINE: DHT-BASED NAT TRAVERSAL 1

DHT-based NAT Traversal
David Irvine∗

MaidSafe.net, 72 Templehill, Troon, South Ayrshire, Scotland, UK. KA10 6BE.
∗david.irvine@maidsafe.net

First published September 2010.

Abstract—Today’s Distributed Hash Tables (DHT’s) and other
overlay networks are based on operating without hindrance of
real world issues regarding connectivity between nodes. This
is not a problem when operating in a private or controlled
environment, but in the transition to peer to peer or fully
distributed networks, it becomes a major headache. This paper
introduces a pure p2p solution to Network Address Translation
(NAT) traversal, which is probably the main problem facing
public p2p networks.
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I. INTRODUCTION

INTERNET technology allows the interconnect of every
device to every other device, in principle. In practice, this is

not the case and for many reasons devices tend to be behind
routers that allow them to go unnoticed or at least act as a
proxy device. This helps connect multiple devices to a single

publicly addressable IP location. The devices behind the router
may have private or classified private addresses and number in
thousands all connected to the Internet and appearing as one
single identity. The router will proxy requests and responses
in many cases to hide the devices.

NAT is a good solution for the lack of publicly available
IP addresses with the current incumbent scheme of IP version
4, IP version 6 will allow more than enough public addresses
to exist and in fact provide several addresses for every square
meter of the planet. Even with IP6, however there will still be
NAT devices around and NAT traversal will still be required.

Several methods exist for traversing NAT devices, includ-
ing Session Traversal Utilities for NAT (STUN) [1] which
is extended to form Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols [2]. This paper will
present a mechanism to exploit these technologies without the
requirement for any servers to exist. This is therefore a solution
for distributed protocols that in fact requires a distributed
protocol to exist (a good fit).

II. NAT TRAVERSAL METHODS

A. Router negotiation protocols
1) Universal Plug and Play (UPnP)[5]: UPnP is a UDT

NAT traversal protocol which utilises HTTP over UDP to
negotiate a port mapping with an enabled router. This allows
a node to appear as though it has a directly connected IP (that
of the router) and port combination. From this perspective the
node appears directly connected (for that port).

UPnP is seen as a security risk by many vendors and is
supplied on a routing device switched off.

Care should be taken with the protocol to ensure that
a permanent mapping is requested, which would last until
requested to be un-mapped or the router is rebooted. The
more effective solution is to select a mapping for a period and
refresh this every few seconds, to ensure the router device is
not congested with stale mappings.

Many routers will have a low limit of concurrent available
UPnP mappings.

2) Network Address Translation Port Mapping Protocol
(NAT-PMP): NAT-PMP is an upgrade of UPnP to attempt to
alleviate the security issues surrounding UPnP, it is currently
not provided in many routers, although this may change in the
future. Again this is a UDP controlled protocol and as such
will not operate in networks that have banned UDP.

B. Hole Punching
Hole punching can successfully traverse approximately

82%[6]of NAT devices. It makes use of the fact that a router
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Algorithm 1 Let A and B be the two hosts, each in its own
private network; N1 and N2 are the two NAT devices; S is a
public server with a well-known globally reachable IP address.
A and B each send a UDP packet to S; the NAT devices N1
and N2 create UDP translation states and assign temporary
external port numbers S relays these port numbers back to
A and B A and B contact each others’ NAT devices directly
on the translated ports; the NAT devices use the previously
created translation states and send the packets to A and B

will leave a UDP port mapped after sending data out. This
is done whether the UDP packet is successfully delivered or
not. This is a necessity for a connectionless protocol as the
router cannot tell whether the transmission will be successful
or whether there is to be a reply (which all well defined
protocols using UDP should ensure there is).

The basis of the process is described in Algorithm 1, it is
relatively simple and uses this conversation method to operate.
It should be noted for BSD type socket API’s it is important to
ensure the SO_REUSE_ADDR is set, allowing address reuse
(very important). Using a UDP overlay type protocol sch as
UDT [7] would introduce some new difficulties here and the
connection set-up time-out should be set very small, as the
first connection attempt will most likely fail, reducing time-
outs makes for more efficient code.

C. Relay nodes

TURN is a system where a node will relay informations
from a another node behind an unfriendly NAT device. In this
case fairness is a major concern as the relay node will have to
provide more bandwidth to the fire-walled node. This cannot
be handed off to alleviate the burden which is unfortunate.
Further research may prove to be very interesting in these
cases though.

III. NAT TRAVERSAL WITH A DHT

Use of a DHT makes no difference to any router negotiation
protocol as described above, but can significantly improve the
performance and security of UDP hole punching techniques.

A. STUN server functionality in a DHT

A STUN server, generally has 2 network interface cards
on different IP addresses (and preferably routes). This allows
multiple routes to a node to be confirmed in a manner similar
to algorithm 1. In a DHT, there should be no servers and in
maidsafe_dht all machines should be able to be unknown in
configuration terms, i.e. we cannot presume we will have dual
homed machines on the network. This initially would appear
to be a problem, whereas in fact it is an advantage. In place
of a dual homed server, a DHT has something more powerful,
a full network of nodes on different networks that can all
message each other and in many ways act like a huge server.
Therefore, to emulate a simple dual homes machine that exists
on two networks is perhaps one of the simplest tasks we can
ask a DHT to perform. A DHT performs these tasks efficiently

and without exposing any server location for an attack to be
carried out.

To achieve the STUN type functionality, we simply carry
out the process as defined in section III-C, where we use a
node on the network to perform NAT detection and traversal
techniques. This negates the requirement for a server, but, how
do other clients know which sever to speak to in case of a port
restricted situation, where the server requires a message to be
sent and relayed to the node we intended. Without this any
port restricted node would be unreachable. This is where we
use a DHT component that provides us with such capability
and this is the routing table or list of contacts.

In the contact tuple for each contact, where an intermediate
node is required (AKA STUN server) a node’s address is
stored along with the end nodes address. So every node
that requires an intermediate, establishes the details of the
intermediary and publishes this to the network as part of
its contact details. This is extremely effective and simple to
implement.

B. DHT Hole Punching

The process is very similar to non DHT hole punching,
except that for a network to be a pure distributed network
there should be no servers, therefore the STUN type server
employed in a normal configuration cannot be used.

C. DHT hole punch NAT traversal process

Booststrap node = [B]; Our node = [U], Other node who is
not sharing the same IP as [U] = [O]

1) On initial bootstrap, receive IP and port [B] detects.
2) If IP = a local IP then directly connected [stop]
3) Send Detection packet to [B] which in turn sends a

packet to [O].
4) Both [B] and [O] send message to [U] and await reply.
5) If [O] receives a reply, it messages [B] with success. [B]

reports back to [U] that we are behind a full cone NAT.
[stop]

6) If [O] cannot get a reply, it asks [B] to message [U]
with an attempt to connect to [O] (which may fail), at
the same time [O] tries to connect to [U]. If successful
[O] reports back to [B] with success, and is then behind
a port restricted NAT [stop].

7) If 6. fails [U] is behind another type of NAT, probably
symmetric, although these is some success at predicting
port increment or decrement symmetric NAT devices, it
is not efficient enough so [stop] with fail at this point.

On all attempts failing the node should report NAT traversal
fail to the application. This is not the final attempt as will be
described in III-E.

This situation, however, should mean that a server node or
an autonomous network node should fail as the remaining op-
tions would be bandwidth restrictive at this time to complete.

1) Implementation: The above solution is purely hole
punching, items 1 & 2 should always be tested first, on fail,
then it is suggested three threads be created and on one thread
run the rest of this list to complete the hole punch attempt.
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On threads 2 and 3 the router negotiations protocols should
be attempted (one on each thread).

If 5 above passes then all thread should be stopped and the
node will start another thread to send keep alive messages to
[B], otherwise UPnP or NAT-PMP will hopefully pass, it is
advisable to accept a NAT-PMP as first choice in this case.

D. Relay request
In situations where all attempts to traverse a NAT fail then

the option of relay can be attempted.
directly connected nodes should create a TCP listening

socket on ports 80 and 443. This information should also be
published in the contact tuple for that node. The UDP port for
listening is not important and any port should suffice.

A relay request from any node is either honoured or not,
depending on the configuration chosen.

E. TCP fall-back configuration
There will be networks where UDP is banned completely

and all transports depending on this would be made useless.
TCP has to be used in this case, but as stated TCP, is very
difficult to use to traverse NAT devices, there have been some
attempts with TCP hole-punching but to no great avail, as the
time-outs or time the hole is left open is significantly smaller,
giving nodes little chance to sync into a conversation in time.

In cases where UDP cannot work in a network we need to
rely on a relay type configuration for TCP.

IV. CONCLUSIONS

NAT traversal is a huge issue for any peer to peer or
distributed solution to networking in IT. It has become in-
creasingly problematic with router manufacturers not rigidly
implementing standards in a manner that is either consistent
or helpful (in many cases).
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Abstract:

Network Address Translation (NAT) causes well-known difficulties for peer-to-peer (P2P) communication,
since the peers involved may not be reachable at any globally valid IP address. Several NAT traversal
techniques are known, but their documentation is slim, and data about their robustness or relative merits is
slimmer. This paper documents and analyzes one of the simplest but most robust and practical NAT traversal
techniques, commonly known as “hole punching.” Hole punching is moderately well-understood for UDP
communication, but we show how it can be reliably used to set up peer-to-peer TCP streams as well. After
gathering data on the reliability of this technique on a wide variety of deployed NATs, we find that about 82%
of the NATs tested support hole punching for UDP, and about 64% support hole punching for TCP streams.
As NAT vendors become increasingly conscious of the needs of important P2P applications such as Voice over
IP and online gaming protocols, support for hole punching is likely to increase in the future.

1 Introduction
The combined pressures of tremendous growth and massive security challenges have forced the Internet to
evolve in ways that make life difficult for many applications. The Internet's original uniform address
architecture, in which every node has a globally unique IP address and can communicate directly with every
other node, has been replaced with a new de facto Internet address architecture, consisting of a global address
realm and many private address realms interconnected by Network Address Translators (NAT). In this new
address architecture, illustrated in Figure 1, only nodes in the “main,” global address realm can be easily
contacted from anywhere in the network, because only they have unique, globally routable IP addresses. Nodes
on private networks can connect to other nodes on the same private network, and they can usually open TCP or
UDP connections to “well-known” nodes in the global address realm. NATs on the path allocate temporary
public endpoints for outgoing connections, and translate the addresses and port numbers in packets comprising
those sessions, while generally blocking all incoming traffic unless otherwise specifically configured.



Figure 1: Public and private IP address domains

The Internet's new de facto address architecture is suitable for client/server communication in the typical case
when the client is on a private network and the server is in the global address realm. The architecture makes it
difficult for two nodes on different private networks to contact each other directly, however, which is often
important to the “peer-to-peer” communication protocols used in applications such as teleconferencing and
online gaming. We clearly need a way to make such protocols function smoothly in the presence of NAT.

One of the most effective methods of establishing peer-to-peer communication between hosts on different
private networks is known as “hole punching.” This technique is widely used already in UDP-based
applications, but essentially the same technique also works for TCP. Contrary to what its name may suggest,
hole punching does not compromise the security of a private network. Instead, hole punching enables
applications to function within the the default security policy of most NATs, effectively signaling to NATs on
the path that peer-to-peer communication sessions are “solicited” and thus should be accepted. This paper
documents hole punching for both UDP and TCP, and details the crucial aspects of both application and NAT
behavior that make hole punching work.

Unfortunately, no traversal technique works with all existing NATs, because NAT behavior is not
standardized. This paper presents some experimental results evaluating hole punching support in current NATs.
Our data is derived from results submitted by users throughout the Internet by running our “NAT Check” tool
over a wide variety of NATs by different vendors. While the data points were gathered from a “self-selecting”
user community and may not be representative of the true distribution of NAT implementations deployed on the
Internet, the results are nevertheless generally encouraging.

While evaluating basic hole punching, we also point out variations that can make hole punching work on a
wider variety of existing NATs at the cost of greater complexity. Our primary focus, however, is on developing
the simplest hole punching technique that works cleanly and robustly in the presence of “well-behaved” NATs
in any reasonable network topology. We deliberately avoid excessively clever tricks that may increase
compatibility with some existing “broken” NATs in the short term, but which only work some of the time and
may cause additional unpredictability and network brittleness in the long term.

Although the larger address space of IPv6 [3] may eventually reduce the need for NAT, in the short term IPv6
is increasing the demand for NAT, because NAT itself provides the easiest way to achieve interoperability
between IPv4 and IPv6 address domains [24]. Further, the anonymity and inaccessibility of hosts on private
networks has widely perceived security and privacy benefits. Firewalls are unlikely to go away even when
there are enough IP addresses: IPv6 firewalls will still commonly block unsolicited incoming traffic by default,
making hole punching useful even to IPv6 applications.

The rest of this paper is organized as follows. Section 2 introduces basic terminology and NAT traversal
concepts. Section 3 details hole punching for UDP, and Section 4 introduces hole punching for TCP. Section 5
summarizes important properties a NAT must have in order to enable hole punching. Section 6 presents our
experimental results on hole punching support in popular NATs, Section 7 discusses related work, and
Section 8 concludes.



2 General Concepts
This section introduces basic NAT terminology used throughout the paper, and then outlines general NAT
traversal techniques that apply equally to TCP and UDP.

2.1 NAT Terminology

This paper adopts the NAT terminology and taxonomy defined in RFC 2663 [21], as well as additional terms
defined more recently in RFC 3489 [19].

Of particular importance is the notion of session. A session endpoint for TCP or UDP is an (IP address, port
number) pair, and a particular session is uniquely identified by its two session endpoints. From the perspective
of one of the hosts involved, a session is effectively identified by the 4-tuple (local IP, local port, remote IP,
remote port). The direction of a session is normally the flow direction of the packet that initiates the session: the
initial SYN packet for TCP, or the first user datagram for UDP.

Of the various flavors of NAT, the most common type is traditional or outbound NAT, which provides an
asymmetric bridge between a private network and a public network. Outbound NAT by default allows only
outbound sessions to traverse the NAT: incoming packets are dropped unless the NAT identifies them as being
part of an existing session initiated from within the private network. Outbound NAT conflicts with peer-to-peer
protocols because when both peers desiring to communicate are “behind” (on the private network side of) two
different NATs, whichever peer tries to initiate a session, the other peer's NAT rejects it. NAT traversal entails
making P2P sessions look like “outbound” sessions to both NATs.

Outbound NAT has two sub-varieties: Basic NAT, which only translates IP addresses, and Network
Address/Port Translation (NAPT), which translates entire session endpoints. NAPT, the more general variety,
has also become the most common because it enables the hosts on a private network to share the use of a single
public IP address. Throughout this paper we assume NAPT, though the principles and techniques we discuss
apply equally well (if sometimes trivially) to Basic NAT.

2.2 Relaying

The most reliable--but least efficient--method of P2P communication across NAT is simply to make the
communication look to the network like standard client/server communication, through relaying. Suppose two
client hosts and have each initiated TCP or UDP connections to a well-known server , at 's global IP
address 18.181.0.31 and port number 1234. As shown in Figure 2, the clients reside on separate private
networks, and their respective NATs prevent either client from directly initiating a connection to the other.
Instead of attempting a direct connection, the two clients can simply use the server to relay messages
between them. For example, to send a message to client , client simply sends the message to server
along its already-established client/server connection, and server forwards the message on to client using
its existing client/server connection with .

Figure 2: NAT Traversal by Relaying

Relaying always works as long as both clients can connect to the server. Its disadvantages are that it consumes
the server's processing power and network bandwidth, and communication latency between the peering clients
is likely increased even if the server is well-connected. Nevertheless, since there is no more efficient technique



that works reliably on all existing NATs, relaying is a useful fall-back strategy if maximum robustness is
desired. The TURN protocol [18] defines a method of implementing relaying in a relatively secure fashion.

2.3 Connection Reversal

Some P2P applications use a straightforward but limited technique, known as connection reversal, to enable
communication when both hosts have connections to a well-known rendezvous server and only one of the
peers is behind a NAT, as shown in Figure 3. If wants to initiate a connection to , then a direct connection
attempt works automatically, because is not behind a NAT and 's NAT interprets the connection as an
outgoing session. If wants to initiate a connection to , however, any direct connection attempt to is
blocked by 's NAT. can instead relay a connection request to through a well-known server , asking

to attempt a “reverse” connection back to . Despite the obvious limitations of this technique, the central
idea of using a well-known rendezvous server as an intermediary to help set up direct peer-to-peer connections
is fundamental to the more general hole punching techniques described next.

Figure 3: NAT Traversal by Connection
Reversal

3 UDP Hole Punching
UDP hole punching enables two clients to set up a direct peer-to-peer UDP session with the help of a well-
known rendezvous server, even if the clients are both behind NATs. This technique was mentioned in section
5.1 of RFC 3027 [10], documented more thoroughly elsewhere on the Web [13], and used in recent
experimental Internet protocols [17,11]. Various proprietary protocols, such as those for on-line gaming, also
use UDP hole punching.

3.1 The Rendezvous Server

Hole punching assumes that the two clients, and , already have active UDP sessions with a rendezvous
server . When a client registers with , the server records two endpoints for that client: the (IP address, UDP
port) pair that the client believes itself to be using to talk with , and the (IP address, UDP port) pair that the
server observes the client to be using to talk with it. We refer to the first pair as the client's private endpoint and
the second as the client's public endpoint. The server might obtain the client's private endpoint from the client
itself in a field in the body of the client's registration message, and obtain the client's public endpoint from the
source IP address and source UDP port fields in the IP and UDP headers of that registration message. If the
client is not behind a NAT, then its private and public endpoints should be identical.

A few poorly behaved NATs are known to scan the body of UDP datagrams for 4-byte fields that look like IP
addresses, and translate them as they would the IP address fields in the IP header. To be robust against such
behavior, applications may wish to obfuscate IP addresses in messages bodies slightly, for example by
transmitting the one's complement of the IP address instead of the IP address itself. Of course, if the application
is encrypting its messages, then this behavior is not likely to be a problem.

3.2 Establishing Peer-to-Peer Sessions

Suppose client wants to establish a UDP session directly with client . Hole punching proceeds as follows:



1. initially does not know how to reach , so asks for help establishing a UDP session with .

2. replies to with a message containing 's public and private endpoints. At the same time, uses
its UDP session with to send a connection request message containing 's public and private
endpoints. Once these messages are received, and know each other's public and private endpoints.

3. When receives 's public and private endpoints from , starts sending UDP packets to both of
these endpoints, and subsequently “locks in” whichever endpoint first elicits a valid response from .
Similarly, when receives 's public and private endpoints in the forwarded connection request,
starts sending UDP packets to at each of 's known endpoints, locking in the first endpoint that
works. The order and timing of these messages are not critical as long as they are asynchronous.

We now consider how UDP hole punching handles each of three specific network scenarios. In the first
situation, representing the “easy” case, the two clients actually reside behind the same NAT, on one private
network. In the second, most common case, the clients reside behind different NATs. In the third scenario, the
clients each reside behind two levels of NAT: a common “first-level” NAT deployed by an ISP for example,
and distinct “second-level” NATs such as consumer NAT routers for home networks.

It is in general difficult or impossible for the application itself to determine the exact physical layout of the
network, and thus which of these scenarios (or the many other possible ones) actually applies at a given time.
Protocols such as STUN [19] can provide some information about the NATs present on a communication path,
but this information may not always be complete or reliable, especially when multiple levels of NAT are
involved. Nevertheless, hole punching works automatically in all of these scenarios without the application
having to know the specific network organization, as long as the NATs involved behave in a reasonable
fashion. (“Reasonable” behavior for NATs will be described later in Section 5.)

3.3 Peers Behind a Common NAT

First consider the simple scenario in which the two clients (probably unknowingly) happen to reside behind the
same NAT, and are therefore located in the same private IP address realm, as shown in Figure 4. Client has
established a UDP session with server , to which the common NAT has assigned its own public port number
62000. Client has similarly established a session with , to which the NAT has assigned public port
number 62005.

Figure 4: UDP Hole Punching, Peers Behind a Common NAT

Suppose that client uses the hole punching technique outlined above to establish a UDP session with ,
using server as an introducer. Client sends a message requesting a connection to . responds to
with 's public and private endpoints, and also forwards 's public and private endpoints to . Both clients
then attempt to send UDP datagrams to each other directly at each of these endpoints. The messages directed to
the public endpoints may or may not reach their destination, depending on whether or not the NAT supports
hairpin translation as described below in Section 3.5. The messages directed at the private endpoints do reach
their destinations, however, and since this direct route through the private network is likely to be faster than an
indirect route through the NAT anyway, the clients are most likely to select the private endpoints for subsequent
regular communication.



By assuming that NATs support hairpin translation, the application might dispense with the complexity of
trying private as well as public endpoints, at the cost of making local communication behind a common NAT
unnecessarily pass through the NAT. As our results in Section 6 show, however, hairpin translation is still
much less common among existing NATs than are other “P2P-friendly” NAT behaviors. For now, therefore,
applications may benefit substantially by using both public and private endpoints.

3.4 Peers Behind Different NATs

Suppose clients and have private IP addresses behind different NATs, as shown in Figure 5. and
have each initiated UDP communication sessions from their local port 4321 to port 1234 on server . In
handling these outbound sessions, NAT has assigned port 62000 at its own public IP address, 155.99.25.11,
for the use of 's session with , and NAT has assigned port 31000 at its IP address, 138.76.29.7, to 's
session with .

Figure 5: UDP Hole Punching, Peers Behind Different NATs

In 's registration message to , reports its private endpoint to as 10.0.0.1:4321, where 10.0.0.1 is 's
IP address on its own private network. records 's reported private endpoint, along with 's public
endpoint as observed by itself. 's public endpoint in this case is 155.99.25.11:62000, the temporary
endpoint assigned to the session by the NAT. Similarly, when client registers, records 's private
endpoint as 10.1.1.3:4321 and 's public endpoint as 138.76.29.7:31000.

Now client follows the hole punching procedure described above to establish a UDP communication session
directly with . First, sends a request message to asking for help connecting with . In response,
sends 's public and private endpoints to , and sends 's public and private endpoints to . and
each start trying to send UDP datagrams directly to each of these endpoints.

Since and are on different private networks and their respective private IP addresses are not globally
routable, the messages sent to these endpoints will reach either the wrong host or no host at all. Because many
NATs also act as DHCP servers, handing out IP addresses in a fairly deterministic way from a private address
pool usually determined by the NAT vendor by default, it is quite likely in practice that 's messages directed
at 's private endpoint will reach some (incorrect) host on 's private network that happens to have the same
private IP address as does. Applications must therefore authenticate all messages in some way to filter out
such stray traffic robustly. The messages might include application-specific names or cryptographic tokens, for
example, or at least a random nonce pre-arranged through .

Now consider 's first message sent to 's public endpoint, as shown in Figure 5. As this outbound message
passes through 's NAT, this NAT notices that this is the first UDP packet in a new outgoing session. The
new session's source endpoint (10.0.0.1:4321) is the same as that of the existing session between and , but
its destination endpoint is different. If NAT is well-behaved, it preserves the identity of 's private endpoint,
consistently translating all outbound sessions from private source endpoint 10.0.0.1:4321 to the corresponding
public source endpoint 155.99.25.11:62000. 's first outgoing message to 's public endpoint thus, in effect,
“punches a hole” in 's NAT for a new UDP session identified by the endpoints (10.0.0.1:4321,
138.76.29.7:31000) on 's private network, and by the endpoints (155.99.25.11:62000, 138.76.29.7:31000)
on the main Internet.



If 's message to 's public endpoint reaches 's NAT before 's first message to has crossed 's own
NAT, then 's NAT may interpret 's inbound message as unsolicited incoming traffic and drop it. 's first
message to 's public address, however, similarly opens a hole in 's NAT, for a new UDP session identified
by the endpoints (10.1.1.3:4321, 155.99.25.11:62000) on 's private network, and by the endpoints
(138.76.29.7:31000, 155.99.25.11:62000) on the Internet. Once the first messages from and have crossed
their respective NATs, holes are open in each direction and UDP communication can proceed normally. Once
the clients have verified that the public endpoints work, they can stop sending messages to the alternative
private endpoints.

3.5 Peers Behind Multiple Levels of NAT

In some topologies involving multiple NAT devices, two clients cannot establish an “optimal” P2P route
between them without specific knowledge of the topology. Consider a final scenario, depicted in Figure 6.
Suppose NAT is a large industrial NAT deployed by an internet service provider (ISP) to multiplex many
customers onto a few public IP addresses, and NATs and are small consumer NAT routers deployed
independently by two of the ISP's customers to multiplex their private home networks onto their respective ISP-
provided IP addresses. Only server and NAT have globally routable IP addresses; the “public” IP
addresses used by NAT and NAT are actually private to the ISP's address realm, while client 's and
's addresses in turn are private to the addressing realms of NAT and NAT , respectively. Each client
initiates an outgoing connection to server as before, causing NATs and each to create a single
public/private translation, and causing NAT to establish a public/private translation for each session.

Figure 6: UDP Hole Punching, Peers Behind Multiple Levels of NAT

Now suppose and attempt to establish a direct peer-to-peer UDP connection via hole punching. The
optimal routing strategy would be for client to send messages to client 's “semi-public” endpoint at NAT

, 10.0.1.2:55000 in the ISP's addressing realm, and for client to send messages to 's “semi-public”
endpoint at NAT , namely 10.0.1.1:45000. Unfortunately, and have no way to learn these addresses,
because server only sees the truly global public endpoints of the clients, 155.99.25.11:62000 and
155.99.25.11:62005 respectively. Even if and had some way to learn these addresses, there is still no
guarantee that they would be usable, because the address assignments in the ISP's private address realm might
conflict with unrelated address assignments in the clients' private realms. (NAT 's IP address in NAT 's
realm might just as easily have been 10.1.1.3, for example, the same as client 's private address in NAT 's
realm.)

The clients therefore have no choice but to use their global public addresses as seen by for their P2P
communication, and rely on NAT providing hairpin or loopback translation. When sends a UDP
datagram to 's global endpoint, 155.99.25.11:62005, NAT first translates the datagram's source endpoint
from 10.0.0.1:4321 to 10.0.1.1:45000. The datagram now reaches NAT , which recognizes that the



datagram's destination address is one of NAT 's own translated public endpoints. If NAT is well-behaved,
it then translates both the source and destination addresses in the datagram and “loops” the datagram back onto
the private network, now with a source endpoint of 155.99.25.11:62000 and a destination endpoint of
10.0.1.2:55000. NAT finally translates the datagram's destination address as the datagram enters 's private
network, and the datagram reaches . The path back to works similarly. Many NATs do not yet support
hairpin translation, but it is becoming more common as NAT vendors become aware of this issue.

3.6 UDP Idle Timeouts

Since the UDP transport protocol provides NATs with no reliable, application-independent way to determine
the lifetime of a session crossing the NAT, most NATs simply associate an idle timer with UDP translations,
closing the hole if no traffic has used it for some time period. There is unfortunately no standard value for this
timer: some NATs have timeouts as short as 20 seconds. If the application needs to keep an idle UDP session
active after establishing the session via hole punching, the application must send periodic keep-alive packets to
ensure that the relevant translation state in the NATs does not disappear.

Unfortunately, many NATs associate UDP idle timers with individual UDP sessions defined by a particular
pair of endpoints, so sending keep-alives on one session will not keep other sessions active even if all the
sessions originate from the same private endpoint. Instead of sending keep-alives on many different P2P
sessions, applications can avoid excessive keep-alive traffic by detecting when a UDP session no longer works,
and re-running the original hole punching procedure again “on demand.”

4 TCP Hole Punching
Establishing peer-to-peer TCP connections between hosts behind NATs is slightly more complex than for
UDP, but TCP hole punching is remarkably similar at the protocol level. Since it is not as well-understood, it is
currently supported by fewer existing NATs. When the NATs involved do support it, however, TCP hole
punching is just as fast and reliable as UDP hole punching. Peer-to-peer TCP communication across well-
behaved NATs may in fact be more robust than UDP communication, because unlike UDP, the TCP protocol's
state machine gives NATs on the path a standard way to determine the precise lifetime of a particular TCP
session.

4.1 Sockets and TCP Port Reuse

The main practical challenge to applications wishing to implement TCP hole punching is not a protocol issue
but an application programming interface (API) issue. Because the standard Berkeley sockets API was
designed around the client/server paradigm, the API allows a TCP stream socket to be used to initiate an
outgoing connection via connect(), or to listen for incoming connections via listen() and accept(), but not
both. Further, TCP sockets usually have a one-to-one correspondence to TCP port numbers on the local host:
after the application binds one socket to a particular local TCP port, attempts to bind a second socket to the
same TCP port fail.

For TCP hole punching to work, however, we need to use a single local TCP port to listen for incoming TCP
connections and to initiate multiple outgoing TCP connections concurrently. Fortunately, all major operating
systems support a special TCP socket option, commonly named SO_REUSEADDR, which allows the application
to bind multiple sockets to the same local endpoint as long as this option is set on all of the sockets involved.
BSD systems have introduced a SO_REUSEPORT option that controls port reuse separately from address reuse;
on such systems both of these options must be set.

4.2 Opening Peer-to-Peer TCP Streams

Suppose that client wishes to set up a TCP connection with client . We assume as usual that both and
already have active TCP connections with a well-known rendezvous server . The server records each

registered client's public and private endpoints, just as for UDP. At the protocol level, TCP hole punching
works almost exactly as for UDP:

1. Client uses its active TCP session with to ask for help connecting to .

2. replies to with 's public and private TCP endpoints, and at the same time sends 's public and
private endpoints to .

3. From the same local TCP ports that and used to register with , and each asynchronously
make outgoing connection attempts to the other's public and private endpoints as reported by , while



simultaneously listening for incoming connections on their respective local TCP ports.

4. and wait for outgoing connection attempts to succeed, and/or for incoming connections to appear.
If one of the outgoing connection attempts fails due to a network error such as “connection reset” or “host
unreachable,” the host simply re-tries that connection attempt after a short delay (e.g., one second), up to
an application-defind maximum timeout period.

5. When a TCP connection is made, the hosts authenticate each other to verify that they connected to the
intended host. If authentication fails, the clients close that connection and continue waiting for others to
succeed. The clients use the first successfully authenticated TCP stream resulting from this process.

Unlike with UDP, where each client only needs one socket to communicate with both and any number of
peers simultaneously, with TCP each client application must manage several sockets bound to a single local
TCP port on that client node, as shown in Figure 7. Each client needs a stream socket representing its
connection to , a listen socket on which to accept incoming connections from peers, and at least two
additional stream sockets with which to initiate outgoing connections to the other peer's public and private TCP
endpoints.

Figure 7: Sockets versus Ports for TCP Hole Punching

Consider the common-case scenario in which the clients and are behind different NATs, as shown in
Figure 5, and assume that the port numbers shown in the figure are now for TCP rather than UDP ports. The
outgoing connection attempts and make to each other's private endpoints either fail or connect to the
wrong host. As with UDP, it is important that TCP applications authenticate their peer-to-peer sessions, due of
the likelihood of mistakenly connecting to a random host on the local network that happens to have the same
private IP address as the desired host on a remote private network.

The clients' outgoing connection attempts to each other's public endpoints, however, cause the respective NATs
to open up new “holes” enabling direct TCP communication between and . If the NATs are well-
behaved, then a new peer-to-peer TCP stream automatically forms between them. If 's first SYN packet to
reaches 's NAT before 's first SYN packet to reaches 's NAT, for example, then 's NAT may
interpret 's SYN as an unsolicited incoming connection attempt and drop it. 's first SYN packet to
should subsequently get through, however, because 's NAT sees this SYN as being part of the outbound
session to that 's first SYN had already initiated.

4.3 Behavior Observed by the Application

What the client applications observe to happen with their sockets during TCP hole punching depends on the
timing and the TCP implementations involved. Suppose that 's first outbound SYN packet to 's public



endpoint is dropped by NAT , but 's first subsequent SYN packet to 's public endpoint gets through to
before 's TCP retransmits its SYN. Depending on the operating system involved, one of two things may

happen:

's TCP implementation notices that the session endpoints for the incoming SYN match those of an
outbound session was attempting to initiate. 's TCP stack therefore associates this new session with
the socket that the local application on was using to connect() to 's public endpoint. The
application's asynchronous connect() call succeeds, and nothing happens with the application's listen
socket.

Since the received SYN packet did not include an ACK for 's previous outbound SYN, 's TCP
replies to 's public endpoint with a SYN-ACK packet, the SYN part being merely a replay of 's
original outbound SYN, using the same sequence number. Once 's TCP receives 's SYN-ACK, it
responds with its own ACK for 's SYN, and the TCP session enters the connected state on both ends.

Alternatively, 's TCP implementation might instead notice that has an active listen socket on that
port waiting for incoming connection attempts. Since 's SYN looks like an incoming connection
attempt, 's TCP creates a new stream socket with which to associate the new TCP session, and hands
this new socket to the application via the application's next accept() call on its listen socket. 's TCP
then responds to with a SYN-ACK as above, and TCP connection setup proceeds as usual for
client/server-style connections.

Since 's prior outbound connect() attempt to used a combination of source and destination
endpoints that is now in use by another socket, namely the one just returned to the application via
accept(), 's asynchronous connect() attempt must fail at some point, typically with an “address in
use” error. The application nevertheless has the working peer-to-peer stream socket it needs to
communicate with , so it ignores this failure.

The first behavior above appears to be usual for BSD-based operating systems, whereas the second behavior
appears more common under Linux and Windows.

4.4 Simultaneous TCP Open

Suppose that the timing of the various connection attempts during the hole punching process works out so that
the initial outgoing SYN packets from both clients traverse their respective local NATs, opening new outbound
TCP sessions in each NAT, before reaching the remote NAT. In this “lucky” case, the NATs do not reject
either of the initial SYN packets, and the SYNs cross on the wire between the two NATs. In this case, the
clients observe an event known as a simultaneous TCP open: each peer's TCP receives a “raw” SYN while
waiting for a SYN-ACK. Each peer's TCP responds with a SYN-ACK, whose SYN part essentially “replays”
the peer's previous outgoing SYN, and whose ACK part acknowledges the SYN received from the other peer.

What the respective applications observe in this case again depends on the behavior of the TCP
implementations involved, as described in the previous section. If both clients implement the second behavior
above, it may be that all of the asynchronous connect() calls made by the application ultimately fail, but the
application running on each client nevertheless receives a new, working peer-to-peer TCP stream socket via
accept()--as if this TCP stream had magically “created itself” on the wire and was merely passively accepted
at the endpoints! As long as the application does not care whether it ultimately receives its peer-to-peer TCP
sockets via connect() or accept(), the process results in a working stream on any TCP implementation that
properly implements the standard TCP state machine specified in RFC 793 [23].

Each of the alternative network organization scenarios discussed in Section 3 for UDP works in exactly the
same way for TCP. For example, TCP hole punching works in multi-level NAT scenarios such as the one in
Figure 6 as long as the NATs involved are well-behaved.

4.5 Sequential Hole Punching

In a variant of the above TCP hole punching procedure implemented by the NatTrav library [4], the clients
attempt connections to each other sequentially rather than in parallel. For example: (1) informs via of
its desire to communicate, without simultaneously listening on its local port; (2) makes a connect() attempt
to , which opens a hole in 's NAT but then fails due to a timeout or RST from 's NAT or a RST from
itself; (3) closes its connection to and does a listen() on its local port; (4) in turn closes its
connection with , signaling to attempt a connect() directly to .

This sequential procedure may be particularly useful on Windows hosts prior to XP Service Pack 2, which did
not correctly implement simultaneous TCP open, or on sockets APIs that do not support the SO_REUSEADDR



functionality. The sequential procedure is more timing-dependent, however, and may be slower in the common
case and less robust in unusual situations. In step (2), for example, must allow its “doomed-to-fail”
connect() attempt enough time to ensure that at least one SYN packet traverses all NATs on its side of the
network. Too little delay risks a lost SYN derailing the process, whereas too much delay increases the total time
required for hole punching. The sequential hole punching procedure also effectively “consumes” both clients'
connections to the server , requiring the clients to open fresh connections to for each new P2P connection
to be forged. The parallel hole punching procedure, in contrast, typically completes as soon as both clients make
their outgoing connect() attempts, and allows each client to retain and re-use a single connection to
indefinitely.

5 Properties of P2P-Friendly NATs
This section describes the key behavioral properties NATs must have in order for the hole punching techniques
described above to work properly. Not all current NAT implementations satisfy these properties, but many do,
and NATs are gradually becoming more “P2P-friendly” as NAT vendors recognize the demand for peer-to-
peer protocols such as voice over IP and on-line gaming.

This section is not meant to be a complete or definitive specification for how NATs “should” behave; we
provide it merely for information about the most commonly observed behaviors that enable or break P2P hole
punching. The IETF has started a new working group, BEHAVE, to define official “best current practices” for
NAT behavior. The BEHAVE group's initial drafts include the considerations outlined in this section and
others; NAT vendors should of course follow the IETF working group directly as official behavioral standards
are formulated.

5.1 Consistent Endpoint Translation

The hole punching techniques described here only work automatically if the NAT consistently maps a given
TCP or UDP source endpoint on the private network to a single corresponding public endpoint controlled by
the NAT. A NAT that behaves in this way is referred to as a cone NAT in RFC 3489 [19] and elsewhere,
because the NAT “focuses” all sessions originating from a single private endpoint through the same public
endpoint on the NAT.

Consider again the scenario in Figure 5, for example. When client initially contacted the well-known server
, NAT chose to use port 62000 at its own public IP address, 155.99.25.11, as a temporary public endpoint

to representing 's private endpoint 10.0.0.1:4321. When later attempts to establish a peer-to-peer session
with by sending a message from the same local private endpoint to 's public endpoint, depends on
NAT preserving the identity of this private endpoint, and re-using the existing public endpoint of
155.99.25.11:62000, because that is the public endpoint for to which will be sending its corresponding
messages.

A NAT that is only designed to support client/server protocols will not necessarily preserve the identities of
private endpoints in this way. Such a NAT is a symmetric NAT in RFC 3489 terminology. For example, after
the NAT assigns the public endpoint 155.99.25.11:62000 to client 's session with server , the NAT might
assign a different public endpoint, such as 155.99.25.11:62001, to the P2P session that tries to initiate with

. In this case, the hole punching process fails to provide connectivity, because the subsequent incoming
messages from reach NAT at the wrong port number.

Many symmetric NATs allocate port numbers for successive sessions in a fairly predictable way. Exploiting this
fact, variants of hole punching algorithms [9,1] can be made to work “much of the time” even over symmetric
NATs by first probing the NAT's behavior using a protocol such as STUN [19], and using the resulting
information to “predict” the public port number the NAT will assign to a new session. Such prediction
techniques amount to chasing a moving target, however, and many things can go wrong along the way. The
predicted port number might already be in use causing the NAT to jump to another port number, for example,
or another client behind the same NAT might initiate an unrelated session at the wrong time so as to allocate the
predicted port number. While port number prediction can be a useful trick for achieving maximum compatibility
with badly-behaved existing NATs, it does not represent a robust long-term solution. Since symmetric NAT
provides no greater security than a cone NAT with per-session traffic filtering, symmetric NAT is becoming
less common as NAT vendors adapt their algorithms to support P2P protocols.

5.2 Handling Unsolicited TCP Connections

When a NAT receives a SYN packet on its public side for what appears to be an unsolicited incoming
connection attempt, it is important that the NAT just silently drop the SYN packet. Some NATs instead actively



reject such incoming connections by sending back a TCP RST packet or even an ICMP error report, which
interferes with the TCP hole punching process. Such behavior is not necessarily fatal, as long as the
applications re-try outgoing connection attempts as specified in step 4 of the process described in Section 4.2,
but the resulting transient errors can make hole punching take longer.

5.3 Leaving Payloads Alone

A few existing NATs are known to scan “blindly” through packet payloads for 4-byte values that look like IP
addresses, and translate them as they would the IP address in the packet header, without knowing anything
about the application protocol in use. This bad behavior fortunately appears to be uncommon, and applications
can easily protect themselves against it by obfuscating IP addresses they send in messages, for example by
sending the bitwise complement of the desired IP address.

5.4 Hairpin Translation

Some multi-level NAT situations require hairpin translation support in order for either TCP or UDP hole
punching to work, as described in Section 3.5. The scenario shown in Figure 6, for example, depends on NAT

providing hairpin translation. Support for hairpin translation is unfortunately rare in current NATs, but
fortunately so are the network scenarios that require it. Multi-level NAT is becoming more common as IPv4
address space depletion continues, however, so support for hairpin translation is important in future NAT
implementations.

6 Evaluation of Existing NATs
To evaluate the robustness of the TCP and UDP hole punching techniques described in this paper on a variety
of existing NATs, we implemented and distributed a test program called NAT Check [16], and solicited data
from Internet users about their NATs.

NAT Check's primary purpose is to test NATs for the two behavioral properties most crucial to reliable UDP
and TCP hole punching: namely, consistent identity-preserving endpoint translation (Section 5.1), and silently
dropping unsolicited incoming TCP SYNs instead of rejecting them with RSTs or ICMP errors (Section 5.2).
In addition, NAT Check separately tests whether the NAT supports hairpin translation (Section 5.4), and
whether the NAT filters unsolicited incoming traffic at all. This last property does not affect hole punching, but
provides a useful indication the NAT's firewall policy.

NAT Check makes no attempt to test every relevant facet of NAT behavior individually: a wide variety of
subtle behavioral differences are known, some of which are difficult to test reliably [12]. Instead, NAT Check
merely attempts to answer the question, “how commonly can the proposed hole punching techniques be
expected to work on deployed NATs, under typical network conditions?”

6.1 Test Method

NAT Check consists of a client program to be run on a machine behind the NAT to be tested, and three well-
known servers at different global IP addresses. The client cooperates with the three servers to check the NAT
behavior relevant to both TCP and UDP hole punching. The client program is small and relatively portable,
currently running on Windows, Linux, BSD, and Mac OS X. The machines hosting the well-known servers all
run FreeBSD.

6.1.1 UDP Test

To test the NAT's behavior for UDP, the client opens a socket and binds it to a local UDP port, then
successively sends “ping”-like requests to servers 1 and 2, as shown in Figure 8. These servers each respond to
the client's pings with a reply that includes the client's public UDP endpoint: the client's own IP address and
UDP port number as observed by the server. If the two servers report the same public endpoint for the client,
NAT Check assumes that the NAT properly preserves the identity of the client's private endpoint, satisfying the
primary precondition for reliable UDP hole punching.



Figure 8: NAT Check Test Method for UDP

When server 2 receives a UDP request from the client, besides replying directly to the client it also forwards the
request to server 3, which in turn replies to the client from its own IP address. If the NAT's firewall properly
filters “unsolicited” incoming traffic on a per-session basis, then the client never sees these replies from server 3,
even though they are directed at the same public port as the replies from servers 1 and 2.

To test the NAT for hairpin translation support, the client simply opens a second UDP socket at a different local
port and uses it to send messages to the public endpoint representing the client's first UDP socket, as reported
by server 2. If these messages reach the client's first private endpoint, then the NAT supports hairpin translation.

6.1.2 TCP Test

The TCP test follows a similar pattern as for UDP. The client uses a single local TCP port to initiate outbound
sessions to servers 1 and 2, and checks whether the public endpoints reported by servers 1 and 2 are the same,
the first precondition for reliable TCP hole punching.

The NAT's response to unsolicited incoming connection attempts also impacts the speed and reliability of TCP
hole punching, however, so NAT Check also tests this behavior. When server 2 receives the client's request,
instead of immediately replying to the client, it forwards a request to server 3 and waits for server 3 to respond
with a “go-ahead” signal. When server 3 receives this forwarded request, it attempts to initiate an inbound
connection to the client's public TCP endpoint. Server 3 waits up to five seconds for this connection to succeed
or fail, and if the connection attempt is still “in progress” after five seconds, server 3 responds to server 2 with
the “go-ahead” signal and continues waiting for up to 20 seconds. Once the client finally receives server 2's
reply (which server 2 delayed waiting for server 3's “go-ahead” signal), the client attempts an outbound
connection to server 3, effectively causing a simultaneous TCP open with server 3.

What happens during this test depends on the NAT's behavior as follows. If the NAT properly just drops server
3's “unsolicited” incoming SYN packets, then nothing happens on the client's listen socket during the five
second period before server 2 replies to the client. When the client finally initiates its own connection to server
3, opening a hole through the NAT, the attempt succeeds immediately. If on the other hand the NAT does not
drop server 3's unsolicited incoming SYNs but allows them through (which is fine for hole punching but not
ideal for security), then the client receives an incoming TCP connection on its listen socket before receiving
server 2's reply. Finally, if the NAT actively rejects server 3's unsolicited incoming SYNs by sending back TCP
RST packets, then server 3 gives up and the client's subsequent attempt to connect to server 3 fails.

To test hairpin translation for TCP, the client simply uses a secondary local TCP port to attempt a connection to
the public endpoint corresponding to its primary TCP port, in the same way as for UDP.

6.2 Test Results

The NAT Check data we gathered consists of 380 reported data points covering a variety of NAT router
hardware from 68 vendors, as well as the NAT functionality built into different versions of eight popular
operating systems. Only 335 of the total data points include results for UDP hairpin translation, and only 286
data points include results for TCP, because we implemented these features in later versions of NAT Check
after we had already started gathering results. The data is summarized by NAT vendor in Table 1; the table only
individually lists vendors for which at least five data points were available. The variations in the test results for a



given vendor can be accounted for by a variety of factors, such as different NAT devices or product lines sold
by the same vendor, different software or firmware versions of the same NAT implementation, different
configurations, and probably occasional NAT Check testing or reporting errors.

Table 1: User Reports of NAT Support for UDP and TCP Hole Punching

UDP TCP

Hole Hole

Punching Hairpin Punching Hairpin

NAT Hardware

Linksys 45/46 (98%) 5/42 (12%) 33/38 (87%) 3/38 (8%)

Netgear 31/37 (84%) 3/35 (9%) 19/30 (63%) 0/30 (0%)

D-Link 16/21 (76%) 11/21 (52%) 9/19 (47%) 2/19 (11%)

Draytek 2/17 (12%) 3/12 (25%) 2/7 (29%) 0/7 (0%)

Belkin 14/14 (100%) 1/14 (7%) 11/11 (100%) 0/11 (0%)

Cisco 12/12 (100%) 3/9 (33%) 6/7 (86%) 2/7 (29%)

SMC 12/12 (100%) 3/10 (30%) 8/9 (89%) 2/9 (22%)

ZyXEL 7/9 (78%) 1/8 (13%) 0/7 (0%) 0/7 (0%)

3Com 7/7 (100%) 1/7 (14%) 5/6 (83%) 0/6 (0%)

OS-based NAT

Windows 31/33 (94%) 11/32 (34%) 16/31 (52%) 28/31 (90%)

Linux 26/32 (81%) 3/25 (12%) 16/24 (67%) 2/24 (8%)

FreeBSD 7/9 (78%) 3/6 (50%) 2/3 (67%) 1/1 (100%)

All Vendors 310/380 (82%) 80/335 (24%) 184/286 (64%) 37/286 (13%)

Out of the 380 reported data points for UDP, in 310 cases (82%) the NAT consistently translated the client's
private endpoint, indicating basic compatibility with UDP hole punching. Support for hairpin translation is
much less common, however: of the 335 data points that include UDP hairpin translation results, only 80 (24%)
show hairpin translation support.

Out of the 286 data points for TCP, 184 (64%) show compatibility with TCP hole punching: the NAT
consistently translates the client's private TCP endpoint, and does not send back RST packets in response to
unsolicited incoming connection attempts. Hairpin translation support is again much less common: only 37
(13%) of the reports showed hairpin support for TCP.

Since these reports were generated by a “self-selecting” community of volunteers, they do not constitute a
random sample and thus do not necessarily represent the true distribution of the NATs in common use. The
results are nevertheless encouraging: it appears that the majority of commonly-deployed NATs already support
UDP and TCP hole punching at least in single-level NAT scenarios.

6.3 Testing Limitations

There are a few limitations in NAT Check's current testing protocol that may cause misleading results in some
cases. First, we only learned recently that a few NAT implementations blindly translate IP addresses they find
in unknown application payloads, and the NAT Check protocol currently does not protect itself from this
behavior by obfuscating the IP addresses it transmits.

Second, NAT Check's current hairpin translation checking may yield unnecessarily pessimistic results because
it does not use the full, two-way hole punching procedure for this test. NAT Check currently assumes that a
NAT supporting hairpin translation does not filter “incoming” hairpin connections arriving from the private
network in the way it would filter incoming connections arriving at the public side of the NAT, because such
filtering is unnecessary for security. We later realized, however, that a NAT might simplistically treat any traffic



directed at the NAT's public ports as “untrusted” regardless of its origin. We do not yet know which behavior is
more common.

Finally, NAT implementations exist that consistently translate the client's private endpoint as long as only one
client behind the NAT is using a particular private port number, but switch to symmetric NAT or even worse
behaviors if two or more clients with different IP addresses on the private network try to communicate through
the NAT from the same private port number. NAT Check could only detect this behavior by requiring the user
to run it on two or more client hosts behind the NAT at the same time. Doing so would make NAT Check
much more difficult to use, however, and impossible for users who only have one usable machine behind the
NAT. Nevertheless, we plan to implement this testing functionality as an option in a future version of NAT
Check.

6.4 Corroboration of Results

Despite testing difficulties such as those above, our results are generally corroborated by those of a large ISP,
who recently found that of the top three consumer NAT router vendors, representing 86% of the NATs
observed on their network, all three vendors currently produce NATs compatible with UDP hole
punching [25]. Additional independent results recently obtained using the UDP-oriented STUN protocol [12],
and STUNT, a TCP-enabled extension [8,9], also appear consistent with our results. These latter studies
provide more information on each NAT by testing a wider variety of behaviors individually, instead of just
testing for basic hole punching compatibility as NAT Check does. Since these more extensive tests require
multiple cooperating clients behind the NAT and thus are more difficult to run, however, these results are so far
available on a more limited variety of NATs.

7 Related Work
UDP hole punching was first explored and publicly documented by Dan Kegel [13], and is by now well-
known in peer-to-peer application communities. Important aspects of UDP hole punching have also been
indirectly documented in the specifications of several experimental protocols, such as STUN [19], ICE [17],
and Teredo [11]. We know of no existing published work that thoroughly analyzes hole punching, however, or
that points out the hairpin translation issue for multi-level NAT (Section 3.5).

We also know of no prior work that develops TCP hole punching in the symmetric fashion described here.
Even the existence of the crucial SO_REUSEADDR/SO_REUSEPORT options in the Berkeley sockets API appears to
be little-known among P2P application developers. NatTrav [4] implements a similar but asymmetric TCP hole
punching procedure outlined earlier in Section 4.5. NUTSS [9] and NATBLASTER [1] implement more
complex TCP hole punching tricks that can work around some of the bad NAT behaviors mentioned in
Section 5, but they require the rendezvous server to spoof source IP addresses, and they also require the client
applications to have access to “raw” sockets, usually available only at root or administrator privilege levels.

Protocols such as SOCKS [14], UPnP [26], and MIDCOM [22] allow applications to traverse a NAT through
explicit cooperation with the NAT. These protocols are not widely or consistently supported by NAT vendors
or applications, however, and do not appear to address the increasingly important multi-level NAT scenarios.
Explicit control of a NAT further requires the application to locate the NAT and perhaps authenticate itself,
which typically involves explicit user configuration. When hole punching works, in contrast, it works with no
user intervention.

Recent proposals such as HIP [15] and FARA [2] extend the Internet's basic architecture by decoupling a host's
identity from its location [20]. IPNL [7], UIP [5,6], and DOA [27] propose schemes for routing across NATs in
such an architecture. While such extensions are probably needed in the long term, hole punching enables
applications to work over the existing network infrastructure immediately with no protocol stack upgrades, and
leaves the notion of “host identity” for applications to define.

8 Conclusion
Hole punching is a general-purpose technique for establishing peer-to-peer connections in the presence of
NAT. As long as the NATs involved meet certain behavioral requirements, hole punching works consistently
and robustly for both TCP and UDP communication, and can be implemented by ordinary applications with no
special privileges or specific network topology information. Hole punching fully preserves the transparency that
is one of the most important hallmarks and attractions of NAT, and works even with multiple levels of NAT--
though certain corner case situations require hairpin translation, a NAT feature not yet widely implemented.
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