Protocol for Asynchronous, Reliable, Secure and
Efficient Consensus (PARSEC)

Pierre Chevalier, Barttomiej Kaminski, Fraser Hutchison, Qi Ma,
Spandan Sharma *

June 20, 2018

Abstract

In this paper we present an algorithm for reaching consensus in the
presence of Byzantine faults in a randomly synchronous network. We
prove the algorithm’s correctness provided that less than a third of par-
ticipating nodes are faulty.

Keywords: asynchronous, byzantine, consensus, distributed

1 Introduction

This paper presents a new byzantine fault tolerant consensus algorithm with
very weak synchrony assumptions. Like Hashgraph [1], it has no leaders, no
round robin, no proof-of-work and reaches eventual consensus with probability
one. However, unlike Hashgraph, it does not only provide high speed in the
absence of faults, but also in their presence. It is also fully open, and a GPLv3
implementation written in Rust will be made available in the near future.

Like HoneyBadger BFT [4], this algorithm is built by composing a number
of good ideas present in the literature. A gossip protocol is used to allow ef-
ficient communication between nodes, as in Hashgraph and [5]. Propagating a
message, and indeed, reaching consensus only costs O(N log V) communications
and O(log N) stages.

The general problem of reaching Byzantine agreement on any value is re-
duced to the simpler problem of reaching binary Byzantine agreement on the
nodes participating in each decision. This allows us to reuse the elegant binary
Byzantine agreement protocol described in [2] after adapting it to the gossip
protocol.

Finally, the need for a trusted leader or a trusted setup phase implied in [2]
is removed by porting the key ideas from [3] to an asynchronous setting.

The resulting algorithm is a Protocol for Asynchronous, Reliable, Secure and
Efficient Consensus.

PARSEC is a key building block of the SAFE Network, an ethical decentral-
ized network of data and applications providing Secure Access For Everyone.

*MaidSafe Ltd., emails: firstname.lastname@maidsafe.net

2 The algorithm description

2.1 The network model

We assume the network to be a set N of N instances of the algorithm communi-
cating via randomly synchronous connections. By ”"randomly synchronous” we
mean that messages are delivered with random delays, such that the average de-
lay is finite. In particular, there may be periods of arbitrarily long delays. This
is a weaker assumption than weak synchrony, and only a bit stronger than full
asynchrony, where the only guarantee is that messages are delivered eventually.

With random synchrony, just like with full asynchrony, it is impossible to
tell whether an instance has failed by completely stopping, or there is just a
delay in message delivery.

We allow a possibility of up to ¢t Byzantine (arbitrary) failures, where 3t < N.
We will call the instances that haven’t failed correct or honest, and the failing
instances faulty or malicious - as Byzantine failure model allows for malicious
behaviour and collaboration.

We will refer to any set of instances containing more than %N of them as a
supermajority.

2.2 Data structures

A node executing the algorithm keeps two data structures: a gossip graph and
an ordered set of blocks. The vertices of the gossip graph, called gossip events,
contain the following fields:

e Payload - data the node wants to pass to other nodes

e Self-parent (optional) - a cryptographic hash of another gossip event cre-
ated by the same node

e Other-parent (optional) - a hash of another gossip event created by some
other node

e Cause - cause of creation for this event; can be request, response or obser-
vation

e Creator ID - the public key of the event’s creator
e Signature - a cryptographic signature of the above fields

The self-parent and other-parent are always present, except for the first
events created by respective nodes, as there are no parent events to be referred
to in such cases. Other-parent is also absent in events created because of an
observation - because there is no gossip partner in such a case.

The blocks in the ordered set are network events signed by a subset of the
nodes in the network. This set is the output of the algorithm, and represents
an order of network events that all nodes agree upon.

Let us also define a few useful terms regarding the gossip graph for future
use.

Definition 2.1. We say that event A is an ancestor of event B iff: A = B, or
A is an ancestor of B’s self-parent, or A is an ancestor of B’s other-parent.

Definition 2.2. We say that event A is a descendant of event B iff B is an
ancestor of A.

Definition 2.3. We say that event A is a strict ancestor/descendant of event
B iff A is an ancestor/descendant of B and A # B.

Following Swirlds[1], we also define additional two useful notions:

Definition 2.4. An event A is said to see an event B iff B is an ancestor of
A, and there doesn’t exist any pair of events by B’s creator By, Bs, such that
By and By are ancestors of A, but B; is neither an ancestor nor a descendant
of By (see fig. 1). We call a situation in which such a pair exists a fork.

Definition 2.5. An event A is said to strongly see an event B iff A sees a set
of events created by a supermajority of nodes in the system that all see B (see

fig. 2).

d 4

f A\

b_1

| >
A

b_0 b_0

Alice Bob Carol Dave Alice Bob Carol Dave

Figure 1: d.4 sees b_0: b.0 is its Figure 2: a_l strongly sees b_0:

ancestor and there are no forks it sees itself, b_1 and d_1, which
have been created by a superma-
jority of nodes and all see b_0

2.3 General overview of the algorithm

The nodes execute two main steps in an infinite loop:

e Synchronise the gossip graph with another random node

e Determine whether any new blocks should be appended to the ordered set

2.3.1 Synchronisation

This step is responsible for building the gossip graph and spreading information
around the network. Nodes continually make random calls, called sync requests,
to other nodes and exchange information about the graph, so that all correct
nodes end up with the same data in their graphs. The hashes and signatures in
gossip events make sure that malicious nodes won’t be able to tamper with any
part of the graph.

Whenever a node receives a sync request, it creates a new gossip event and
sends a sync response back. The self-parent of this event is the hash of the
last gossip event created by the recipient, and the other-parent is the hash of
the last event created by the sender (which the recipient learns about from the
exchange). The recipient of the sync response also creates a new event with
analogous parents. Both events created also store the reason for which they
were created (whether due to a request, or a response).

If the recipient of a request/response believes it knows a network event that
should be appended as the next one in the chain, it records its vote as the
payload of the newly created event. The other nodes will learn of this vote
during subsequent sync exchanges made by its creator.

2.3.2 Determining order

During this step, a node analyses the graph, counts the votes and decides which
block should become the next one. This step is a complex one and so it is
described in detail in a separate subsection below.

2.4 Calculating the order

To be able to order blocks, we need first to have some blocks that can be ordered.

As mentioned above, the gossip events may contain votes for network events.
A gossip event which sees events created by a supermajority of nodes that
contain votes for a given network event is said to see a valid block, and we will
call such gossip events block-votes. The first gossip event which strongly sees
block-votes created by a supermajority of nodes is said to be an observer. The
block-votes don’t need to see the same valid block - in fact, it is the case when
they see different valid blocks that is the most interesting. However, they do
have to only refer to blocks that haven’t been appended to the ordered set yet.

An observer implicitly carries a list of N meta-votes. Every meta-vote is
just a binary value denoting whether a corresponding node’s block-vote is to be
taken into account when determining the order. An observer meta-votes true
on a node if it can strongly see a block-vote by that node. Every node is being
meta-voted on, hence there are N meta-votes, and since an observer strongly
sees a supermajority of block-votes, by definition, at least %N of them are true.

Meta-votes reduce the problem of Byzantine agreement about the order to
that of binary Byzantine agreement, which has been solved previously[2].

The algorithm described in [2] has some shortcomings, though, the most
significant of which is the need for a common coin, a primitive which may require
synchronicity and/or a trusted third party for efficient creation or setup. The
algorithm presented here works without such a requirement.

2.4.1 Binary agreement

For the sake of simplicity, we will define the algorithm in terms of deciding a
single meta-election - that is, deciding whether or not to take a single node’s
opinion into account when trying to choose a single new block. We can view a
meta-election for node X with latest agreed block B as a function on a subset
Hx p of the gossip graph G, which is the set of all events that are descendants
of any observer of this meta-election:

meta_electionx g : Hx g — {0,1, L}

The L value means that the result has not been decided yet at this point in
the graph.

In order to calculate the meta-election value for events in Hx g, we will need
to calculate a few helper values as well:

e stage - a counter denoting the calculation stage

e estimates - a set of one or two values estimating the final result
e bin_values - a helper set of binary values

e aux - a helper binary value

stage is an integer value which represents the stage of the protocol we are
considering when looking at a specific gossip event. A number is associated with
each gossip event, such that the stage of the observers is always 0. The stage
of any other gossip event is either the stage of its self-parent, or the stage of
its self-parent plus one under specific conditions. The exact conditions under
which the stage is incremented will be described later in more details. Other
variables such as estimates, bin_values and aux all depend on the stage.

estimates is a set of binary values that represent the perceived opinion(s) of
the creator of any gossip event on the outcome of a meta-election. The estimate
of an observer is the set containing just its own meta-vote. The estimate of any
subsequent gossip event can be a different set as described below.

If the estimates for an event’s self-parent contain a single value v, and that
event sees more than % events with —w in their estimates (which means that at
least one honest node estimated —w), this opposite value gets added to its own
estimates (so it will contain both true and false).

est: Hy,p — 2101

{v} if there exists an ancestor d of e
such that v = meta_election(d) # L
{w} if e is an observer with meta-vote w
{0,1} if est(self_par(e)) = {v}
est(e) = and e sees > & events x

by different nodes such that

stage(x) = stage(e) and —w € est(z)
next_est(self_par(e)) if stage(e) > stage(self_par(e))
est(self_par(e)) otherwise

self _par(e) denotes e’s self-parent, and next_est and will be defined later, once
we have defined more values related to the events.

Once an event can see a supermajority of events by different nodes which
agree in their estimates, this agreed estimate becomes an element of this event’s
bin_values. This set serves to validate values proposed by other nodes - if they
propose something we don’t have in bin_values, we will reject it, as we have no
way to ensure its validity.

bv : HX,B — 2{0’1}
bv(e) = {v: there exist > 2N events x

by different nodes such that
e sees = and stage(e) = stage(z) and v € est(z)}

false’ added to bin_values ‘ ‘ ‘
becausea_1seesa_1,c_0 '
andb_0.
This is over 2/3 of nodes 1= ‘
(a super majority) ‘ '
a_l AN
‘false'added to estimate ‘false’estimate
because a_1 seesc_0and takenfom —
b_0, whichis at least 1/3 self-parent c_0
N
c 0
a0 _
b_0
Alice Bob Carol Dave
The bottom quadrants of each gossip event represent the estimates.
true false

The top quadrants are the bin_values.

Figure 3: An example gossip graph, along with estimates and bin_values as-
sociated with each gossip event. It illustrates how different nodes process the
information they receive in order to populate their bin_values.

If an event’s parent has an empty aux value, and the event itself has non-
empty bin_values, it can propose a value to be agreed. This proposing is realised
by having a non-empty aux value. If bin_values contains just one value, this
value becomes the aux value; otherwise, we can pick an arbitrary value, so we
will pick true. If the parent’s value isn’t empty, it becomes our value as well.

aux: Hx p — {0,1, 1}

v if there exists an ancestor d of e
such that v = meta_election(d) # L

1 if bv(e) = @
aux(e) = w if bv(e) = {w}
and aux(self_par(e)) = L
1 if bv(e) = {0,1}

and aux(self_par(e)) = L
aux(self_par(e)) if aux(self_par(e)) # L

Whenever an event sees a supermajority of events with valid aux values, we
perform the gradient leadership based concrete coin protocol, which will lead
either to deciding the final agreed value, or updating the estimates and moving
to the next stage.

First, let us define some helper functions:

supermajority_valid_aux : Hx p — {0, 1}

supermajority_valid_aux(e) = e sees a supermajority
of events = by different nodes
such that stage(z) = stage(e)
and aux(z) € bv(e)

count.aux: Hy g x {0,1} = N

count_aux(e,v) = number of events x by different nodes such that
e sees = and stage(z) = stage(e)
and aux(z) € bv(e) and aux(z) =v

Now we can define how to determine a decided value:

meta_election : Hx p — {0,1, L}

v if there exists an ancestor d of e
such that v = meta_election(d) # L
1 if stage(e) = 0 (mod 3)
meta_election(e) = and count_aux(e,1) > 2N
0 if stage(e) =1 (mod 3)
and count_aux(e,0) > N
1 otherwise

If an event sees a supermajority of valid aux values, but isn’t able to decide,
the next event will mark the beginning of the next stage of the algorithm. This
lets us finally define stage:

stage: Hx p =+ N

stage(e) = 0 if e is an observer
& | next_stage(self_par(e)) otherwise

nextstage: Hx g — N

1 if supermajority_valid_aux(e)
next_stage(e) = stage(e) + and next_est(e) # L
0 otherwise

We will also define two auxiliary values derived from stage - step and round.
They will be more convenient than stage in the description below.

round: Hy p = N

round(e) = stage(e)/3

step: Hx p = N

step(e) = stage(e) — round(e) x 3

Under this definition, the sequential stages 0, 1, 2, 3, ... will translate to round
0, step 0; round 0, step 1; round 0, step 2; round 1, step 0; etc.

If we don’t decide in a stage, we need new estimates for the next one. This
is being taken care of by the three-step concrete coin protocol briefly mentioned
before:

e In any round in step 0, we decide true if we see a supermajority of true aux
values. If we see a supermajority of false values, we update the estimate
to false. If we don’t see any supermajority, we estimate true in the next
step.

e In any round in step 1, we proceed analogously to above, but in the op-
posite way: if we see a supermajority of false aux values, we decide false;
if we see a supermajority of true values, we estimate true; if we don’t see
any supermajority, estimate false.

e Step 2 of any round is a genuinely flipped concrete coin step. If we see
a supermajority of agreeing aux values, we update our estimate to that
value, otherwise we flip a concrete coin (described below) and update our
estimate to that. We never decide in a coin step.

How first two points work with regards to deciding can be seen in the defini-
tion of meta_election above. To calculate new estimates, we will define a next_est
function (which appeared already in the definition of est):

est_true : Hx p — {0,1}

est_true = [(step(e) = 1 or step(e) = 2) and count_aux(e, 1) > 2N]
or (step(e) = 0 and count_aux(e, 0) < 2N
and meta_election(e) = 1)

est_false : Hx g — {0,1}

est_false = [(step(e) = 0 or step(e) = 2) and count_aux(e, 0) > 2N]
or (step(e) = 1 and count_aux(e, 1) < 2N
and meta_election(e) = L)

next_est: Hy g — 200 U {1}

{1} if est_true(e)
) {0} if est_false(e)
nextest(e) = {coin_flip(e)} if coinflip(e) # L
4 otherwise

coin_flip is a function that gives the result of the concrete coin flip. In order
to define it, we must first define the gradient of leadership and responsiveness
threshold.

Let us call the following hash the round hash:

round_hash : Hx g — [0,2%%%)

round_hash(e) = hash(hash(X), hash(B), hash(round(e)))

The leadership index of node Y at gossip event e will be its index on the list
of all nodes in the network, sorted by XOR-distance from round_hash(e) (the
XOR-distance being simply Y @ round_hash(e)).

In order to get the result of the coin flip, we will look for the first gossip
event by the node with the leader index 0 that has an aux value in the current
step, and take the least significant bit of its hash. There is one caveat, though
- the first leader might be dead and never gossip such an event. We can never
know for sure because of our synchronicity assumptions.

To get past that hurdle, we use the responsiveness_threshold, which is just an
integer function of N. This threshold will denote the number of gossip events
caused by responses we will allow ourselves to create before we use another
leader - one whose event we see, and who has the lowest leadership index.

Formally, it would look like this:

ev_waited : Hy p = N

0 if supermajority_valid_aux(e)
and not
ev_waited(e) = supermajority_valid_aux(p)
1+ ev_waited(p) if cause(e) = response
ev_waited(p) otherwise

where p = self_par(e)

The function ev_waited counts how many events passed since the first one
where we could theoretically flip the coin. We can use this to check whether the
first leader ”timed out”.

But first, we will define a function that gives us the first event by a node
which has an aux value:

first_aux : N x HX,B — HX,B U {J_}

first_aux(Y,e) = the event x created by Y such that e sees x
and aux(z) # L and aux(self_par(z)) = L
and stage(e) = stage(x) if it exists; L otherwise

Let us denote the first leader by L. Then the function that tells us if the
”timeout” happened will be:

leader_timed_out : Hx g — {0,1}

leader_timed_out(e) = first_aux(L,e) = L and
ev_waited(e) > responsiveness_threshold (V)

The event that generates the coin will be calculated the following way:

coin_event : HX,B — HX73 @] {J_}

first_.aux(L, e) if not leader_timed_out(e)
first_.aux(Y,e) if leader_timed_out(e),
where Y is the node with
the lowest leadership index
for which first_aux(Y,e) # L
L otherwise

coin_event(e) =

Then, the coin flip will be just:

coinflip: Hx p —{0,1, L}

lowest order bit
coin_flip(e) = ¢ of hash(coin_event(e)) if coin_event(e) # L
ui otherwise

We call the result of the coin_flip function a genuinely flipped concrete coin.
This is all we need to reach consensus on the meta-votes.

2.4.2 Agreement about the next block

Using the above, every node can calculate the results of all meta-elections.
Once the results are known, they can be used to determine the next block in
the ordered set.

Let us remember that the meta-elections started with a set of observers - a
set of events that all strongly see a supermajority of block-votes. The results of
the meta-elections tell us which block-votes are to be taken into account.

The properties of meta-elections ensure that all nodes will agree on the con-
sidered set of nodes. What we need to do is change that into an agreement on
what the next block should be. This is pretty trivial, although we must consider
two issues: every node could create multiple block-votes, and every block-vote
could see multiple valid blocks.

To counter the first issue, we can just take the earliest block-vote created
by a given node. The events created by a single node form a linear sequence,
so the earliest one is well-defined. This narrows the considered set down to a
single block-vote per node.

10

The next step is to choose a valid block among potentially multiple ones seen
by the chosen block-vote. To do that, we can take the lexicographically first
one, or use really any method that will always choose the same element of a set.

Once we have one vote on a block per node, we just count them and the next
agreed block will be the one with the most votes. Any ties can be broken again
by lexicographic ordering, or some other method.

This completes the description of the algorithm. The next section will prove
that it is correct, that is, that it provides robust consensus in a randomly syn-
chronous setting, and in the presence of Byzantine faults.

3 Proof of correctness

Let us begin by stating two important properties of the gossip graph.

Definition 3.1. We call two gossip graphs consistent iff for every gossip event
x that is present in both graphs, both contain the same set of ancestors of x
with the same sets of edges between them.

Lemma 3.1. All nodes in the network have consistent gossip graphs.

Lemma 3.2. If a pair of gossip events (x,y) is a fork, and another gossip event
z strongly sees x, then no other gossip event in a consistent graph can strongly
see y.

We won'’t prove the above lemmas - they have been proved in [1] (as Lemma
5.11 and 5.12, respectively).

Let us now prove some properties of our approach stemming from it being
an adaptation of [2].

Lemma 3.3 (Progress). If a correct node created a gossip event in stage s,
every other correct node will eventually create an event in stage s as well.

Proof. Step numbers are based on seeing a supermajority of some events - either
events seeing a valid block (for observers, stage 0), or events in the previous stage
having valid aux values (stage greater than 0). Assume there is event e in stage
s created by a correct node - it means that it sees a set of events that allowed
it to proceed to stage s. A correct node will continue gossiping, so every other
correct node will eventually learn of e and create a descendant of e.

A descendant of e sees everything that e sees (provided that e is not a part
of a fork - but its creator is correct, so it is not). If e was in stage 0, any
descendant will thus automatically be in stage at least 0.

Assume that the lemma is true for stage s — 1. e has a self-ancestor in stage
s — 1, which means that every correct node will eventually create an event in
stage s—1. Any later event which has e as an ancestor will thus have an event in
stage s — 1 as a self-ancestor, and will see events allowing it to progress to stage
s. Thus, the lemma is also true for s. By induction, the proof is complete. [

Lemma 3.4. The probability that the genuinely flipped concrete coin is common
and pseudorandom is > %—6, with an arbitrarily small e when the responsiveness
threshold is sufficiently high, and the required threshold value is logarithmic in

N.

11

Proof. First, note that the node with leadership index 0 is common and pseudo-
random. It is common, as the nodes share the list of the nodes in the network,
the last decided block in the ordered set and the round number. It is pseu-
dorandom, as it is based on a cryptographic hash of values outside the nodes’
control.

With probability > %, the node with leadership index 0 will be honest. In
such a case, it gossips its events honestly to random nodes, so that correct
nodes will receive the coin event before ”timeout” with some probability p.
This probability depends only on the chosen responsiveness threshold and the
average delay in message delivery (which is unknown, but finite).

The probability of the coin being common and random is strictly larger than
the probability of the event described above. Such an event’s probability, on
the other hand, is > %p. Aslongasp > 1— %5, this is > % —e.p>1-— %5
can be ensured by choosing the right responsiveness threshold. In fact, p can
be arbitrarily close to 1 with a large enough responsiveness threshold.

Since gossip from correct nodes is expected to reach everyone in O(log N)
exchanges, the minimal responsiveness threshold will also be logarithmic in V.

O

Lemma 3.5. If all correct nodes created events in stage s = 2 (mod 3) (step
2), and no such event decided a value, then the estimates of their events in the
next stage will be in agreement with probability > % —¢' for arbitrarily small £

Proof. The estimate in a stage after the coin stage is based on the auxiliary
values seen by events in the coin stage. There are five possible situations here:

e All correct nodes’ events in stage s+ 1 see a supermajority of true values
from stage s - estimates agree with probability 1.

e All correct nodes’ events in stage s+ 1 see a supermajority of false values
from stage s - estimates agree with probability 1.

e Some correct nodes’ events in stage s+ 1 see a supermajority of true values
from stage s; the others throw a coin, which is common and random with
probability > % — ¢, and the result is true with probability % - estimates

agree with probability > % — &’ (where ¢’ = i¢).

e Some correct nodes’ events in stage s + 1 see a supermajority of false
values from stage s; the others throw a coin, which is common and random
with probability > % — &, and the result is false with probability % -

estimates agree with probability > % —¢.

e No correct nodes’ events in stage s + 1 see a supermajority of any value
in stage s; all of them throw a coin, which is common and random with
probability > % — ¢ - estimates agree with probability > % —e.

The total probability of agreement is a weighted average of five values, all
greater than % — &', which means the total probability is also greater than this
value. O

Lemma 3.6. If all correct nodes’ first events in stage s had estimates = {v},
their first events in stage s + 1 will also have estimates = {v}.

12

Proof. If all correct nodes only estimate v, there is no way for any event to see
even % of estimates for —v - so no event by a correct node will have it in its
estimates in stage s.

For a value to be an element of bin_values, there must be a supermajority
of events estimating that value. Because of the above, the only value that can
have a supermajority is v. Thus, every event with nonempty bin_values will have
it equal to {v}. Hence, every event with an aux value will have it equal to v.

In order to proceed to the next stage, an event has to see a supermajority
of valid aux values. No event can have a value other than v as aux in stage s,
so there will always be a supermajority for v. Depending on the stage number,
this can either lead to deciding v, or estimating v in stage s + 1. Either way,
the agreement will still hold. O

Lemma 3.7. If all correct nodes’ first events in round r had estimates = {v},
they will all decide v within round r.

Proof. No matter what malicious nodes do, there is less than a third of them,
so no event by a correct node will have —w in estimates (by definition of the est
function). This means that for bin_values of an event to be non-empty, it must
see a supermajority of estimates for v, as there will never be a supermajority
for —w.

The above means that no correct node will add —w to bin_values, so all of
them will eventually create an event with aux = v. This means there will be a
supermajority of events by different creators with aux = v, which will make the
correct nodes either decide at step 0 (if v = 1), or estimate 0 for the next step
and decide then. O

Theorem 3.8 (Binary Byzantine Consensus). The algorithm for calculating
meta-election results presented in this paper satisfies the general properties of a
Byzantine fault tolerant consensus algorithm.:

e Validity - if a correct node decides on a value, it has been proposed by a
correct node.

e Agreement - if a correct node decides on a value, all correct nodes decide
on that value.

e Integrity - once a correct node decides on a wvalue, it never decides on
another value.

e Termination - all correct nodes eventually decide with probability 1.

Validity. We will prove an equivalent statement: that if initially all correct
nodes propose v, then all correct nodes will decide v. Since v is a binary value,
a node can only decide a value not proposed by a correct node if all correct
nodes propose v, and the node decides —v. Thus, deciding v when all correct
nodes propose v is equivalent to always deciding on a value proposed by a correct
node.

If all correct nodes propose v, they will all put v in their estimates. By
Lemma 3.7, they will all decide v within the first round. O

13

Agreement. Assume there is an event e created by a correct node which was
able to decide a value v. It means that step(e) = 0 or step(e) = 1 (there would
be no decision otherwise). This event must have seen a supermajority of events
with aux = v, which means there was no supermajority for —v. Thus, if a
correct node has seen a supermajority in this stage, it must have been for v, so
it would decide v. If it wasn’t, it would estimate v for the next stage, which
means there will be agreement at the start of the next stage. Following Lemma
3.6, this agreement will propagate to the end of the stage and the next stage,
until everyone decides v. O

Integrity. Once an event e created by a correct node decides on a value v, all
later events created by that node will have event e as an ancestor. Following
the definition of meta_election, all later events will also decide v. O

Termination. By Lemma 3.3, if a correct node creates an event in stage s, then
every correct node eventually creates an event in stage s. This means there
will be events by > %N correct nodes, which will eventually be seen by every
correct node. Every such event will have non-empty estimates. It is not possible
for both 0 and 1 to be estimated by < % events by different correct nodes, so
at least one of those values will eventually be an element of estimates of every
correct node’s event.

Eventually, the events with agreeing estimates will all be seen by an event
created by every correct node. Hence, every correct node will eventually create
an event with non-empty bin_values, and so an aux value.

The events with aux values will eventually be seen by every correct node’s
event, which means every correct node will eventually either decide or progress
to the next stage.

By Lemma 3.5, if no node decided in step 0 or 1, they will all agree after
step 2 with probability > % —¢’. By Lemma 3.7, this means they will decide in
the next round with probability > % —¢&’. Thus, the probability of no agreement

in round r is < (1 - % + E’)4 < (% + 5’)T. This tends to 0 as r increases, so the
nodes will eventually decide with probability 1. O

The above theorem proves that our algorithm will reach agreement about
every single meta-election in a Byzantine fault tolerant way. This is not the end,
though - we also need to prove that meta-elections lead to agreement about the
next block in the ordered set. The proof of that is presented below.

Lemma 3.9. If the result of a meta-election is v, there have been at least %
meta-votes for v.

Proof. Assume there have been less than % meta-votes for v and v has been
decided. When nodes that initially meta-voted v create an event that sees a
supermajority of meta-votes, this supermajority must contain at least % votes
for —v - so their estimates will contain —v. On the other hand, no node that
meta-voted —v can ever create an event that will see at least % estimates for v,
so they won’t add v to estimates.

Due to the above, any supermajority among the estimates must be for —w.
Any event with non-empty bin_values can thus only have —v in this set, which
means that all valid aux values will also be —v, which will lead to a decision on
—ov within two stages.

14

This is a contradiction. Such a situation is impossible, which proves the
lemma. O

Lemma 3.10. The set of nodes for which the result of meta-election is true is
always non-empty.

Proof. Assume all meta-elections resulted in false. By Lemma 3.9, at least %

nodes meta-voted false for every node, so there have been at least NTQ meta-
votes for false.

On the other hand, by definition of an observer, every node voted true for
more than %N nodes - so there have been more than %N 2 meta-votes for true,

which leaves less than NTz meta-votes for false (there are N? meta-votes in
total: N nodes meta-vote in N meta-elections).
This is a contradiction, which proves the lemma. O

Theorem 3.11 (Byzantine Consensus). The algorithm for calculating the next
block presented in this paper satisfies the general properties of a Byzantine fault
tolerant consensus algorithm:

e Validity - if a correct node decides on a value, it has been proposed by a
correct node.

e Agreement - if a correct node decides on a value, all correct nodes decide
on that value.

e Integrity - once a correct node decides on a wvalue, it never decides on
another value.

e Termination - all correct nodes eventually decide with probability 1.

Validity. Assume a correct node decided that the next block should be a block B
containing a network event E. For such a situation to happen, there must have
been a block-vote for B, and such a block-vote must have seen a supermajority
of votes for . A supermajority will always contain a correct node, so a correct
node must have voted for F. O

Agreement. Assume that a correct node decided the next block B. Since a
decision has been reached, this means that there is consensus about the meta-
votes, so every correct node will have chosen the same nodes’ block-votes.

For any observer to meta-vote true on a node, it must have strongly seen
a block-vote by that node. By Lemma 3.2, even if that node created a fork, if
any other observers also voted true on that node, they must have strongly seen
block-votes on the same fork. Thus, we can consider block-votes by all elected
nodes to form linear histories - which will be seen the same way by all nodes by
Lemma 3.1.

In a linear history, the earliest block-vote is well-defined. Also, because all
correct nodes see the same history, they will all choose the same block-vote as
the earliest. If the block-vote votes for multiple blocks, all correct nodes will
use the same tie-breaker algorithm and choose the same single one. Thus, all
correct nodes will gather the same set of votes, and because they use the same
voting rules, decide the same block as the next one. O

15

Integrity. By construction of the algorithm, once the next block has been de-
cided, it is appended to the ordered set and no other block can be decided in
its place. O

Termination. For every network event, we expect all correct nodes to eventually
vote for it. This means there will be a supermajority of votes for every event,
which will eventually be seen by some other events - block-votes - created by each
correct node. The block-votes will eventually be strongly seen by other events
created by each correct node - the observers. Once there is a supermajority
of observers, we start the binary agreement algorithm, which will terminate
by Theorem 3.8. After binary agreement terminates, because the set of voters
for the next block is non-empty (by Lemma 3.10), the next block is already
determined - so the agreement about the next block also terminates. O

4 Conclusions

A new consensus algorithm has been presented, building upon some previous
achievements in this field ([1], [2], [3]), but combining their features in a novel
way. It makes very weak synchrony assumptions, uses a gossip graph (as in [1]
and [5]), and a concrete coin (as in [3]). We believe this approach will be useful
in numerous applications, one of which is the SAFE Network. We also intend
to conduct further research in search of possibilities for making this algorithm
fully asynchronous.

Appendix AExtending the algorithm to a muta-
ble network

The main algorithm is formulated in terms of a network in which all the members
are known a priori (a permissioned network). This is enough in some settings,
but sometimes it is necessary to allow the set of members to be modified, so
that members of the network can join and leave at will.

In order to accommodate mutability in the network, every node has to keep
a record of who are the current members. We will call this record the network
members list. This list is initialised with the so called genesis group and can
only be modified as a result of a block becoming stable.

The gossip graph is being processed with the assumption that the set of
valid members of the network is exactly the network members list. Whenever
a decision about a block is reached, the members list is updated (if the block
contained information about a member leaving or a new member joining), and
the calculation for the next block is started according to the updated list.

This method ensures that every meta-election uses a constant list of members
from start to finish. Thanks to this approach, the proofs of correctness apply
without modifications.

References

[1] Baird L. The Swirlds Hashgraph Consensus Algorithm: Fair, Fast, Byzantine
Fault Tolerance, Swirlds Tech Report SWIRLDS-TR-2016-01 (2016)

16

Mostefaoui A., Hamouna M., Raynal M. Signature-Free Asynchronous
Byzantine Consensus witht < n/3 and O(n?*) Messages, ACM PODC (2014)

Micali S. Byzantine Agreement, Made Trivial, (2018)

Miller A., Xia Y., Croman K., Shi E., Song D. The Honey Badger of BFT
Protocols, CCS (2016)

Team Rocket Snowflake to Avalanche: A Novel Metastable Consensus Pro-
tocol Family for Cryptocurrencies, (2018)

17

