
IRVINE: "PEER TO PEER" PUBLIC KEY INFRASTRUCTURE 1

"Peer to Peer" Public Key Infrastructure
David Irvine∗, Reviewers: Alison Shaw†, Dan Schmidt Valle‡

MaidSafe.net, 72 Templehill, Troon, South Ayrshire, Scotland, UK. KA10 6BE.
∗david.irvine@maidsafe.net, †alison.shaw@maidsafe.net, ‡dan.schmidt@maidsafe.net

First published September 2010. Revised August 2011.

Abstract—We present a system of validation that utilises asym-
metric encryption to create a Public Key Infrastructure (PKI)
which requires no servers or centralised control. This system
provides a mathematically secure method of validation that
can be employed in any modern network, especially distributed
networks and overlay networks such as Distributed Hash Tables
(DHTs). We also consider the system’s ability to accommodate
user-selected names.

Index Terms—security, freedom, privacy, DHT, encryption

CONTENTS

I Introduction 1

II Background concepts and notation 1
II-A Asymmetric public key encryption . . . 2
II-B Hash functions 2
II-C Digital signatures 2

III Implementation 2
III-A Linking identity to key-pairs 3
III-B Addition of an identity revocation method 3
III-C Using and validating an identity using a

key addressable storage system 3
III-D Using and validating an identity using

message passing 3

IV Combined with DHT 4

V Selectable identities 4

VI Adaptations 4
VI-A Sharing chosen names 4
VI-B Validity provision 5

VII Conclusions 5

References 6

Biographies 6
David Irvine . 6

I. INTRODUCTION

VALIDATIONof identity is essential for any communic-
ating parties that wish to have confidence in the identity

of the other party and the information that they communicate:
the absence of an effective identity verification system may
allow other entities to intercept and alter communications, or

masquerade as one of the parties, without either party being
aware of the problem.

Public key infrastructures (PKIs) aim to facilitate authen-
tication of the source and integrity of a piece of information.
Checking the integrity of a message uses public key crypto-
graphy and digital signing, of which section II-A provides
a brief reminder. Hence a crucial responsibility of a PKI
is to provide a means of verification of an identity and its
association with the key-pair used for public key cryptography.

There are two main methods of identity validation provided
by the PKIs of today. The first method relies on the trust-
worthiness and security of a central authority to provide
certification of identities, so any compromise of this central
authority impacts our ability to verify identities and the
information they communicate. The second method, referred
to as a web of trust, provides validation of identity based on
how trustworthy an entity’s peers perceive it to be. A web
of trust is vulnerable to attacks where many untrustworthy
entities rate each other highly then surround a good identity
and intercept or hide information. Thus both of these systems
are open to considerable abuse and neither is able to provide a
secure system allowing the free creation of identifiable nodes.

The system presented in the paper relies on neither a central
authority nor a web of trust, instead enabling entities to val-
idate identities only with the use of mathematical operations.
The vital distinguishing features of the system that allow it to
operate in this way are as follows:

• An entity is equipped with two key-pairs, the first pair
allocated to the usual digital signing of messages and the
second pair designated to identity verification procedures.

• An entity’s identity is derived directly from these key-
pairs.

Such a system, which avoids the pitfalls of the usual central
authentication or web of trust, has been the subject of many
a wish list[1] for some time now.

In general, our system works in conjunction with a key
addressable storage system, which sections III-A, III-B and
III-C explain. Section III-D illustrates the system’s potential
for use in the absence of such storage, and section IV explores
the system’s potential in the context of DHTs. Section V builds
on the case where we have storage, exploring the system’s
ability to cater for user-chosen names. Section VI explores
some ways of altering and extending the system to provide
further functionality.

II. BACKGROUND CONCEPTS AND NOTATION

We provide a brief overview of some core concepts used in
this paper. Throughout this paper we will use the following
notation, which is explained in more detail in this section:

IRVINE: "PEER TO PEER" PUBLIC KEY INFRASTRUCTURE 2

• In the context of asymmetric encryption, we will use
Kpub to denote a public key and Kpriv to denote the
corresponding private key. See section II-A for more
information.

• We will repeatedly make use of a hash function; we will
denote the hash of a piece of data M by Hash(M). See
section II-B for more information.

• The digital signature of a piece of data M using a private
key Kpriv will be denoted by SigKpriv(M). See section
II-C for more information.

A. Asymmetric public key encryption

This paper makes use of public key cryptography, a system
of encryption which does not require passwords or keys to
be distributed but instead allows the publication of a public
key, denoted by Kpub. This key can be thought of as the
encryption key, where any data encrypted by this key can only1

be decrypted by the holder of the corresponding private key,
denoted by Kpriv. This private key can hence be considered
as the key for ‘unlocking’ the data. The reverse procedure is
also valid: data can be decrypted using the private key then
encrypted using the public key to recover the original data.
Since everyone has access to the public key this may seem
strange and useless, but we will see in section II-C that such
key-pairs can be used to excellent effect.

B. Hash functions

We can give a hash function a piece of data and it returns
a binary string of fixed length, which we will call the hash
of the data. The hash of a piece of data can be thought of
as a digital fingerprint for several reasons. Firstly, just as a
person’s fingerprints do not change of their own accord, the
hash of a piece of data will never change. Secondly, just as
a fingerprint of a person is almost certainly unique, the hash
of a piece of data is also almost certainly unique. Thirdly,
just as we cannot reconstruct or reveal a person from their
fingerprint, we cannot reconstruct or reveal a piece of data
from its hash. With both fingerprints and hashes there is the
possibility of non-uniquness: if two distinct pieces of data have
matching hashes we say they have collided and that we have
a hash collision. The strength of a hash function depends on
how low the chance of collisions is and how difficult it is to
find pieces of data whose hashes collide. The way in which a
hash function works should attempt to produce very different
hashes for seemingly similar pieces of data; the binary strings
it produces should also be long enough to provide a sufficiently
low chance of collisions.

Early hash algorithms such as MD4, MD5 and even early
SHA allow too many collisions to occur and are thus regarded
as broken. Efficient hash functions that produce longer hashes
are desirable in cases where a high probability of uniqueness
is required. Henceforth we will assume that the hash function
we use is strong enough to assign each piece of a data a

1Here we assume the algorithm and its implementation are perfect, which
is unlikely to be the case in reality.

unique hash2. We refer the reader to [6] Ch1. p.33 for more
information about hash functions.

C. Digital signatures
Using the ideas of asymmetric encryption (see II-A) and

hashing (see II-B), we now outline the process of digital
signing:

Suppose person A wishes to send a message M to person B.
We equip person A with a key-pair consisting of a private key
Kpriv and a public key Kpub, the latter of which is publicly
available for person B to use. It is in the interests of both
parties for person B to be able to ensure that the message M
was definitely sent by person A and to detect if it has been
changed during its transmission. To facilitate this, person A
can hash the message M and then decrypt it using their private
key; the result of these operations is called the digital signature
of the message M. Person A then sends both M and its digital
signature to person B. To check that the message M has arrived
intact and unchanged, person B does three things: firstly, he
encrypts the digital signature using person A’s public key to
recover the hash of message M; secondly, person B hashes
the message he received. Finally, person B compares these two
hashes - if they differ, either the message M or its signature has
been altered. If the hashes are the same, the message received
by person B is cryptographically guaranteed to be the piece
of data to which the signature refers, and therefore it is the
message M which person A sent. Note that we rely on the hash
function to have a very low probability of collisions, otherwise
our guarantee is weakened.

Throughout, the signature of a piece of data M using private
key Kpriv will be denoted by SigKpriv(M).

III. IMPLEMENTATION

This validation system requires manipulation of key-pairs,
as do all of today’s cryptographically secure validation sys-
tems. One of the fundamental tenets of this paper is that these
key-pairs are themselves used to generate the identity rather
than being later tied to an identity (see section III-A). We
present two versions of the system: one that provides identity
validation by using a key addressable storage system3 (see
section III-C) and one that works without storage and instead
lets identities be validated by message-passing (see section
III-D). In both versions, from a security perspective it is most
thorough to verify the sender’s identity for every message,
but this may be too slow for some implementations, so it
might instead be preferable to check the validity of identities
at random, sacrificing some thoroughness for speed.

The system described in section III-C will operate equally
well with any kind of key addressable storage system, for ex-
ample databases or distributed hash tables (DHTs). Although
there may be other kinds of storage that our system could
be used in conjunction with, the kind of storage used could
influence its effectiveness.

2In practice, producing unique hashes of data is impossible because the
only way to avoid collisions is to make the fixed length of the hashes longer
than any known piece of data.

3A key addressable storage system allows data values to be stored in a
location labelled by a key. This key can be looked up to see what its associated
value is.

IRVINE: "PEER TO PEER" PUBLIC KEY INFRASTRUCTURE 3

A. Linking identity to key-pairs

We wish to create an identity that is inherently connected
to the key-pair we will use for communication, rather than
artificially ‘tying’ an otherwise unrelated identity to our key-
pair. A relatively simple way to achieve this uses one key-pair
(consisting of Kpriv and Kpub) and defines the identity by
Identity = Hash(Kpub). This ensures the identity is mathem-
atically linked to a key-pair rather than being later tied to one.

Given the possibility that an identity can be compromised,
we have an incentive to introduce a structure that enables us
to prove our identity to others (and to prevent other entities
from being able to steal or abuse our identity). This is achieved
by using key-pairs as follows: the first key-pair (key-pair 1,
consisting of Kpriv1 and Kpub1) will be used for our usual
communication purposes, and we introduce a second key-pair
(key-pair 2, consisting of Kpriv2 and Kpub2) whose purpose
will be to validate our identity. Throughout, it is understood
that the private key Kpriv2 is never placed in a position where
it can be obtained by other parties, so the owner of Kpriv2
corresponds correctly to the identity. To connect our key-pairs
with our identity, we define the identity as follows:

Identity = Hash(Kpub1 + SigKpriv2(Kpub1)) (1)

Note that we have not explicitly defined how ‘+’ works,
although its use should be specified and consistent in prac-
tice. There are various options for its definition, for ex-
ample it could represent concatenating the two values in-
volved. Since hashing the value Kpub1 + SigKpriv2(Kpub1)
produces the identity, we will henceforth refer to this value
Kpub1 + SigKpriv2(Kpub1) as the identity precursor.

We will demonstrate in sections III-C and III-D how this
definition of the identity allows it to be validated. Section
III-C considers the scenario where we have a key addressable
storage system on which we can store information, and section
III-D considers the case when we do not have such a storage
facility at our disposal.

A drawback of defining the identity as in equation (1) is that
the identity may be cumbersome to use in practice, because
strong hash functions produce very long hashes. However, in
several cases, the system would be a good enough method,
for example, in applications such as telephone numbers or
bar-codes on products. We will discuss the possibilities for a
more user-friendly identity in section V.

B. Addition of an identity revocation method

For identity revocation to operate, we require a key ad-
dressable storage system. This storage system should retain
all information as immutable unless the signer of the data
requests amendment or deletion, the reasons for which we will
discuss shortly. The creator of the identity stores the following
information on the key addressable storage system:

Key: Value:
Identity Kpub1 + SigKpriv2(Kpub1)

This key and value pair will henceforth be referred to as the
identity packet, or simply the packet. Observe that the value

stored is the identity precursor Kpub1 + SigKpriv2(Kpub1), so
hashing this value produces the identity. The validity of an
identity is checked by looking the identity up in the key
addressable storage system and checking that the hash of the
stored value is equal to the identity. A person wishing to
revoke their identity could delete its associated packet on the
key addressable storage system, but this means that we can’t
distinguish between non-existent and revoked identities, so it
is preferable to replace the public key in the stored value with
a false key (for example, consisting of all 0s) so that the hash
of the stored value does not equal the identity and the identity
can be recognised as being invalid.

It is necessary that only the holder of Kpriv2 is able to alter
the identity packet, otherwise other parties could invalidate or
remove this identity without the holder of Kpriv2’s permission.
Far worse, suppose an attacker somehow compromised the
identity and it was revoked. If the attacker knew the identity’s
associated identity precursor, they could edit the identity
packet and restore it its previous state, incorrectly presenting
the identity as valid.

C. Using and validating an identity using a key addressable
storage system

An identity is defined as in equation (1). As in section
III-B, the creator of the identity stores an identity packet in a
key addressable storage system, with key equal to the identity
and value equal to the identity precursor, so the hash of the
value equals the key. Consider a message, allegedly from this
identity, formatted as shown:

Identity
Payload SigKpriv1(Payload) (optional)

To validate the identity of the sender, we look up the identity
in the key addressable storage system as described in section
III-B and check that the hash of the stored value equals the
identity.

Additionally, if the optional signature SigKpriv1(Payload) of
the payload is included then digital signing, as described in
section II-C, enables us to verify that they payload has not
been altered in transmission.

D. Using and validating an identity using message passing

In this case we do not use a key addressable storage system
and will instead validate the identity of a message sender by
passing messages. An identity is defined as in equation (1).
Consider a message, allegedly from this identity, formatted as
shown:

Identity
Kpub1 SigKpriv2(Kpub1)
Kpub2 SigKpriv2(Kpub2)
Payload SigKpriv1(Payload) (optional)

Upon receiving this message there are several things
we can and should check. Is the identity equal to
Hash(Kpub1 + SigKpriv2(Kpub1))? We have Kpub2, so are the
signatures of Kpub1 and Kpub2 correct? If any of these checks
fail then we have cause for concern: perhaps information has

IRVINE: "PEER TO PEER" PUBLIC KEY INFRASTRUCTURE 4

merely been communicated incorrectly, but maybe the entity
we are communicating with is not trustworthy. In the former
case we may not be able to communicate correctly with the
sender, e.g. if one of the keys is wrong. In the latter case
we do not wish for communication to continue. Either way,
correspondence should halt.

If the above checks all pass then, in particular, we know that
Kpub2 is correct and we can use it to encrypt a challenge for
the sender and, as they should be the holder of Kpriv2, they
should be able to decrypt our challenge and respond correctly
to it. Alternatively we could send them a piece of information
and request that they sign it using Kpriv2, then verify their
response using Kpub2. A correct response from either of these
options verifies that the sender has Kpriv2 and is therefore
trustworthy.

If the optional signature of the payload is included, we also
have the ability to verify that the payload has been transmitted
correctly.

IV. COMBINED WITH DHT

All distributed hash table (DHT) networks have a particular
requirement in common: to create a network address that is
unique. There are various techniques for achieving this, for
example Chord[2] uses the hash of the IP/PORT combination
and Kademlia[3] uses a random hash.

Using the method outlined in section III-C and storing
the identity packet on the network ensures uniqueness of
identity and provides a storage mechanism for finding a
node’s public key. To implement this, we firstly look up
Hash(Kpub1 + SigKpriv2(Kpub1)) in the DHT to check for
entries with the same key. If there are no such entries, we store
the identity precursor value Kpub1 + SigKpriv2(Kpub1) at the
key Hash(Kpub1 + SigKpriv2(Kpub1)). For completeness, the
hash size chosen should be of the same length as the keys
used in the network addressing scheme. The system described
can be used to send encrypted information to that node or to
validate a signature from that node.

If such a system were implemented in a DHT or similar
publicly connected system (as web servers are), then the
security of the private key Kpriv1 is paramount. In today’s
networks this is achieved via brute force techniques such as
firewalls, secured hard drives, private key passwords (which
make automatic reboots of a server require human interven-
tion) and other custom approaches. In the system presented
there is no obvious improvement in the security of Kpriv1,
however, the system is unique in offering the ability to reduce
the effectiveness or scope of the private key Kpriv1.

V. SELECTABLE IDENTITIES

The method described in section III-C is extremely se-
cure and resilient to a cryptographic attack, but does suf-
fer form one major deficiency: in this system the iden-
tity is a long binary string because it is defined as
Hash(Kpub1 + SigKpriv2(Kpub1)). Such strings are not eas-
ily readable for a human and are certainly too long to be
communicated comfortably on paper or verbally. We would
like to enable users to choose a desired and more manageable

‘chosen name’, then secure it to their usual identity (provided
the chosen name is not already in use by someone else).

The functionality and security of the existing system revolve
around the storage of the identity packet defined in section
III-C in a key addressable storage system, so any way of
associating a chosen name with the identity should not alter
this characteristic.

A way of securing a chosen name to an identity is to store
the following key/value pairs on the key addressable storage
system:

Key: Value:
Hash(Chosen name) Kpub1 + SigKpriv2(Kpub1)
Identity Kpub1 + SigKpriv2(Kpub1)

The first row of the table could optionally be stored else-
where, provided it is immutable to everyone except its creator.

We would communicate using our chosen name rather than
using our identity. To revoke our identity we would change
the identity packet as described in section III-B. To validate
a chosen name and its associated identity we would look up
Hash(Chosen name) then use the identity precursor to find
the identity packet and validate the identity as usual - if the
identity is not valid then neither is its associated chosen name.

If a person’s identity is compromised, they can revoke it then
create a new identity and put the new identity packet on the
key addressable storage system. They can then alter the value
addressed by the key Hash(Chosen name) to correspond to
this new identity, so they are able to continue communication
using their chosen name.

VI. ADAPTATIONS

This section presents some ways in which the system
described could be adapted to offer greater functionality.
Both ideas rely on a more complex key addressable storage
system than previously required, hence these options are not
necessarily attainable with more basic forms of the system.

A. Sharing chosen names

Section V presents an extention of the current system that
enables an entity to communicate using a more manageable
‘chosen name’. However, this requires an entity’s chosen name
to be unique to them, potentially making it difficult to choose
a name that is simultaneously short, easy to remember and
unique. This section provides a way for multiple entities
to share a chosen name and be distinguished by additional
information, e.g. geographical location or date of birth. For
the sake of example we will suppose that entities with the
same chosen name will use their geographical location to
distinguish themselves; in practice it may be desirable to use
several types of information (e.g. use both location and date of
birth) or allow entities to supplement their chosen name with
information of an unrestricted nature.

Given an entity x, we denote the keys of their first key-pair
by Kpub(x,1) and Kpriv(x,1), and analagously Kpub(x,2) and
Kpriv(x,2) denote the keys of their second key-pair. For brevity,
the identity associated with x is written as IDx and is defined by
IDx = Hash(Kpub(x,1) + SigKpriv(x,2)(Kpub(x,1))). This is the

IRVINE: "PEER TO PEER" PUBLIC KEY INFRASTRUCTURE 5

same as in section III-A, except the notation that allows us
to distinguish between entities. The location of the entity x
will be denoted by locationx.

To allow entities a, b, c, etc. to share the name Chosen name,
they each store their signed identity plus location on the key
addressable storage system as follows:

Key:
Hash(Chosen name)

Values:
IDa + locationa + SigKpriv(a,1)(IDa + locationa)

IDb + locationb + SigKpriv(b,1)(IDb + locationb)

IDc + locationc + SigKpriv(c,1)(IDc + locationc)

etc.

Each entity also stores their usual identity packet, for
example entity a would store the following:

Key: Value:
IDa Kpub(a,1) + SigKpriv(a,2)(Kpub(a,1))

Suppose we want to find and verify a’s identity. We ask for
their chosen name and location, then look Hash(Chosen name)
up in the key addressable storage system. We have demanded
that different entities sharing a chosen name cannot have the
same location, so we can use locationa to find IDa. We use IDa

to find their identity packet, which we check the validity of
as usual. The packet contains Kpub(a,1) which we can use to
verify the signature of the value stored at Hash(Chosen name).

The reliability of this system depends on the following
property of the key addressable storage system: only the
entity who signed a value can change or remove it. The key
addressable storage systems discussed previously have not had
multiple entities storing values under the same key and would
not necessarily cater for the ideas presented in this section.

B. Validity provision

In this section we consider a way of allowing other parties to
associate information with an entity - for example, if a person
has paid for six months’ membership to a website, it would
be useful for the website administrators to be able to associate
confirmation of this membership with the person, and after six
months revoke the information.

For brevity we will write ID to denote the identity. For a
party X with private key KprivX and public key KpubX we
will write infoX to denote the information that they want to
associate with an entity.

We store the identity packed as usual:

Key: Value(s):
ID Kpub1 + SigKpriv2(Kpub1)

To add functionality we associate the identity with a ‘chosen
name’ and allow parties A, B, C etc. to add values under the
key Hash(Chosen name) as follows:

Key:
Hash(Chosen name)

Values:
Kpub1 + SigKpriv2(Kpub1)
ID+ infoA + SigKprivA(ID+ infoA)
ID+ infoB + SigKprivB(ID+ infoB)
ID+ infoC + SigKprivC(ID+ infoC)

etc.

The chosen name and identity are related as in section V.
To check the validity of, for example, infoA, we use KpubA to
check that it has been signed correctly. The inclusion of the
identity in the stored values ensures that the information from
party A is tied to this entity and cannot be copied or abused
by other entities. However, it may be in the interests of party
A to include an expirey date in infoA so that the identity can’t
replicate the value and abuse it.

The ideas in this section again rely on a key addressable
storage system where stored values can only be changed or
removed by the entity that has signed them. A necessary dis-
advantage of this scenario is that the key Hash(Chosen name)
could accumulate values that the identity cannot change or
remove.

VII. CONCLUSIONS

The system presented in this paper is ground-breaking in its
ability to enable the creation of secure PKI networks that don’t
rely on a central authority or web of trust, instead allowing
entities to validate identities autonomously.

Sections III-A, III-B and III-C have together constituted the
system in the presence of key addressable storage. Section
V has extended this system to allow the basic use of user-
chosen names, and adaptations of this extension may have
further benefits to offer, as section VI has illustrated.

Section IV has considered some additional possibilities for
this form of the system in the context of a DHT; we refer the
reader to the MaidSafe paper on distributed hash tables for a
more thorough consideration of our system in this situation.
It has not been within the scope of this paper to explore the
system’s abilities when used in conjunction with other specific
types of key addressable system.

Sections III-A and III-D have together demonstrated the
system’s basic abilities in the absence of a key addressable
storage system, although this case may also have potential for
additional functionality.

Practical examples of possible utilisations of the system
include:

• Identification of credit card data linking the identity to
a known name in another secure location. People could
have a card and a revocation card or, perhaps preferably,
directly use key-pairs as described in this paper.

• Single continuous validation systems where a known
identity can be used across multiple web sites or on-line
systems that require history to operate effectively.

We refer the reader to the MaidSafe Self Authentication paper
for further practical applications of the theory presented in this
paper.

IRVINE: "PEER TO PEER" PUBLIC KEY INFRASTRUCTURE 6

REFERENCES

[1] As described by Van Jacobson in this link below, August
30, 2006 http://video.Google.com/videoplay?docid=-
6972678839686672840

[2] Stoica, Robert Morris, David Karger, M. Frans Kaashoek,
and Hari Balakrishnan,Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications

[3] Petar Maymounkov and David Mazirese Kademlia: A Peer-
to-peer Information System Based on the XOR Metric
{petar,dm}@cs.nyu.edu http://Kademlia.scs.cs.nyu.edu

[4] David Irvine, maidsafe: A new networking paradigm,
david.irvine@maidsafe.net

[5] David Irvine, MaidSafe Distributed File System,
david.irvine@maidsafe.net

[6] A. Menezes, P. van Oorschot & S. Vanstone,
Handbook of Applied Cryptography, CRC Press, 1996,
www.cacr.math.uwaterloo.ca/hac

David Irvine is a Scottish Engineer and innovator who has spent the last
12 years researching ways to make computers function in a more efficient
manner.

He is an Inventor listed on more than 20 patent submissions and was
Designer of one of the World’s largest private networks (Saudi Aramco, over
$300M). He is an experienced Project Manager and has been involved in start
up businesses since 1995 and has provided business consultancy to corporates
and SMEs in many sectors.

He has presented technology at Google (Seattle), British Computer Society
(Christmas Lecture) and many others.

He has spent many years as a lifeboat Helmsman and is a keen sailor when
time permits.

	Introduction
	Background concepts and notation
	Asymmetric public key encryption
	Hash functions
	Digital signatures

	Implementation
	Linking identity to key-pairs
	Addition of an identity revocation method
	Using and validating an identity using a key addressable storage system
	Using and validating an identity using message passing

	Combined with DHT
	Selectable identities
	Adaptations
	Sharing chosen names
	Validity provision

	Conclusions
	References
	Biographies
	David Irvine

